
Novell eDirectory/iMonitor Remote Code
Execution Security Advisory

08-Sept-2006

 Summary

Novell’s HTTP Protocol Stack (httpstk) is a component of iMonitor which provides a web-
based interface for management of eDirectory, an LDAP service forming the basis for many
of the world’s largest identity-management deployments. The code fails to check the length
of client-supplied HTTP Host request-header (e.g. Host: www.host.com) values before using
them to build a formatted URL into an inadequate, statically-sized buffer on the stack. This
condition occurs in a call to snprintf() while the server is preparing an HTTP redirect
response and can be triggered remotely, before any authentication takes place.

 Affected Software

This vulnerability has been confirmed to exist in the following products and corresponding
platforms. For additional information, see Novell’s website.

Software Title and URL Version(s) Platform Perspective

 Novell eDirectory >= 8.7.3.8 Windows Remote

 Novell eDirectory >= 8.7.3.8 Linux Remote

 Novell eDirectory Open Enterprise Server SP2 OES SP2 Remote

 Novell eDirectory N/A (Safe) Netware N/A

 Impact

Attacker-supplied code can be executed on vulnerable systems with a privilege level equal to
the process that loads the httpstk library (the Novell Directory Services process). By default,
this is NT_AUTHORITY\SYSTEM on Windows and root on Linux and Solaris.

 Credit and Contact

Michael Ligh michael.ligh@mnin.org
Ryan Smith ryan@hustlelabs.com

Page 1

http://www.novell.com/products/edirectory/
http://www.novell.com/products/edirectory/
http://www.novell.com/products/edirectory/
http://www.novell.com/products/edirectory/
mailto:michael.ligh@mnin.org
mailto:ryan@hustlelabs.com

 Details – C++ Pseudo Code

The vulnerable function’s logic was examined, and the general structure of the code,
depicted in the C++ language, is presented in this section. This code mimics the functions’
behavior as accurately as possible in order to illuminate the vulnerability; however, it is only a
modest representation of the original source.

The BuildRedirectURL() method calls snprintf() in order to store the user-supplied HTTP
Host request-header value into a 64-byte buffer. The assumed intention of this code is to
redirect the client to a valid URL on the host that was specified in the request. Under
correct circumstances, snprintf()’s length parameter is set to the maximum number of bytes
the destination buffer can hold. However, this code utilized the length parameter in order to
specify the number of bytes to copy from the Host request-header value, regardless of
whether or not the destination buffer is capable of holding it. Therefore, a malicious
individual may specify a Host request-header value exceeding 64 bytes, causing a standard
stack-based buffer overflow.

#define HTTPHDR_HOST_FIELD 211

char szHttp[] = "HTTP";
char szHttps[] = "HTTPS";
char szHttpS[] = "http%s://";
char szCrlf[] = "\r\n";
char szS[] = "s";
char szD[] = ":%d";
char szS_3[] = "%s";
BYTE nullbyte = '\0';

typedef struct SAL_AddrBuf_t {
 short sin_family;
 u_short sin_port;
 struct in_addr sin_addr;
 struct in6_addr sin6_addr;
 char sa_data[42];
} SAL_AddrBuf;

class HRequest
{
public:
 int SendRedirectRsp(void);
 int SendHeader(int);
 int SendNotFoundRsp(void);
 int SendEndOfContent(void);
 int RspSetHdrValue(char *, char *);
 bool ReqIsSecureChannel(void);
 char *ReqHdrValue(unsigned int);
 SAL_AddrBuf *ReqHostAddress(void);
private:
 int BuildRedirectURL(unsigned int, bool, char *);
 char *path;
 HDR_LOOKUP_TBL *ValueTable;
 unsigned int uint;
 int something;

Page 2

 SOCKET sock;
 SAL_AddrBuf name;
};

int HRequest::BuildRedirectURL(unsigned int stackid, bool fl_https,
char *redirect_url)
{
 register char *colon, *crlf;
 register size_t length;
 register unsigned short port; // Original just recycled stackid

 // Stack variables
 SAL_AddrBuf SAL;
 char *szHostHdrValue;
 SAL_AddrBuf *pSAL;
 int retval;

 // Zero-out the local SAL_AddrBuf structure
 memset(&SAL,0,66);

 // Fill in the class' SAL_AddrBuf structure with IP and port
 pSAL = ReqHostAddress();
 SAL.sin_family = pSAL->sin_family;

 // This fills in the redirect port in SAL.sin_port
 retval = PStkEnumTransports(stackid, 2, &Callback, &SAL);
 if ((retval != 0) && (retval != SERR_CALLBACK_CANCELLED)) {
 return(0);
 }

 // Obtain a pointer to the user-supplied HTTP Host-Header value
 szHostHdrValue = ReqHdrValue(HTTPHDR_HOST_FIELD);
 if (szHostHdrValue == NULL) {
 return(SERR_INVALID_REQUEST);
 }

 // Exclude colon and/or CRLF from length of host header value
 colon = strchr(szHostHdrValue, ':');
 if (colon == NULL) {
 crlf = strstr(szHostHdrValue, szCrlf);
 if (crlf == NULL) {
 length = strlen(szHostHdrValue);
 }
 else {
 length = crlf - szHostHdrValue;
 }
 }
 else {
 length = colon - szHostHdrValue;
 }

 // Determine if the redirect URL should be https:// or http://
 if (fl_https) {
 redirect_url += sprintf(redirect_url, szHttpS, szS);
 }
 else {
 redirect_url += sprintf(redirect_url, szHttpS, nullbyte);
 }

 // Append the Host-Header value to the redirect URL
 _snprintf(redirect_url, length+1, szS_3, szHostHdrValue);
 redirect_url += length;

Page 3

 // Is IPv4
 if (SAL.sin_family == AF_INET) {
 if (retval == ERROR_SUCCESS) {
 if (SAL.sin_port == 0) {
 return(SERR_OBJECT_NOT_FOUND);
 }
 else {
 memcpy((void *)&SAL.sin_addr.s_addr,

(void *)&pSAL->sin_addr.s_addr, 4);
 }
 }
 }

 // Is IPv6
 else if (SAL.sin_family == AF_INET6) {
 if (retval == ERROR_SUCCESS) {
 if (SAL.sin_port == 0) {
 return(SERR_OBJECT_NOT_FOUND);
 }
 else {
 memcpy((void *)&SAL.sin6_addr.u,

(void *)&pSAL->sin6_addr.u, 16);
 }
 }
 }

 // Convert the port from network byte order to host byte order
 port = ntohs(SAL.sin_port);

 // Append the port to the redirect URL if it is non-standard
 if ((fl_https && port == 443) || (!fl_https && port == 80)) {
 return(ERROR_SUCCESS);
 }
 sprintf(redirect_url, szD, port);
 return(ERROR_SUCCESS);
}

int HRequest::SendRedirectRsp(void) {

 register int retval;
 register bool fl_https;

 // Stack variables
 char redirect_url[64];
 char *memblock;
 unsigned int stackid;

 // Determine if the connection is operating over SSL
 fl_https = ReqIsSecureChannel();
 if (!fl_https) {
 retval = PStkGetProtocolStackByName(szHttps, &stackid);
 }
 else {
 retval = PStkGetProtocolStackByName(szHttp, &stackid);
 }

 if (retval == ERROR_SUCCESS) {

 // Call this function to begin building the redirect URL
 retval = BuildRedirectURL(stackid, fl_https, redirect_url);

 // Remaining code snipped for brevity
}

Page 4

 Details - Disassembly

The following disassembly of httpstk.dlm for Windows, version 201.14.24.0, depicts this
vulnerability.

HRequest::SendRedirectRsp:

.text:62407079 lea eax, [ebp+request_url]
.text:6240707C mov ecx, esi
.text:6240707E test bl, bl
.text:62407080 push eax
.text:62407081 setz al
.text:62407084 push eax
.text:62407085 push [ebp+stackid]
.text:62407088 call HRequest::BuildRequestURL

HRequest::BuildRedirectURL:

.text:62406EF0 push [ebp+szHostHdrValue]
.text:62406EF3 mov esi, eax
.text:62406EF5 add esi, dword ptr [ebp+request_url]
.text:62406EF8 lea eax, [edi+1]
.text:62406EFB push offset aS_3
.text:62406F00 push eax
.text:62406F01 push esi
.text:62406F02 call ds:_snprintf

 Exploit Design

The stack overflow can be triggered with a GET, POST, or HEAD request to a path on the
server that produces an HTTP 302 redirect response (mainly /nds and /dhost), when
accompanied by an overly-long Host request-header value. By examining the stack segment
around the vulnerable function, one can locate and overwrite the return address (Linux) or
structured exception handlers (Windows) to gain control of execution. When exploiting this
vulnerability, the shell code should be optimized to not contain NULL bytes, colons,
carriage returns, or line feeds.

A proof-of-concept exploit has been developed that will reliably exploit all versions of
eDirectory on both Windows and Linux, without the need of fingerprinting. This was
accomplished by using SEH overwrites and saved-instruction-pointer overwrites at the same
time.

The vulnerability’s existence may be determined by sending an overly-long HTTP Host-
header value containing a colon in the first few bytes. Versions that are not vulnerable will
send a redirect containing an IP address, whereas versions that are vulnerable will send a
redirect containing the initial bytes before the colon. Furthermore, a web request to an

Page 5

invalid resource (e.g. http://host/an_invalid_resource) will result in an error page being
returned. This error page has been found to be variable depending on the version of
eDirectory that is installed.

 Defense

The following Snort rules can assist in the detection or prevention of attacks against
vulnerable systems, however limitations exist and they should never be used in lieu of
patching. False negatives may be high if certain evasion techniques are implemented,
including the use of non-standard white space and/or carriage returns. Additionally, it is
possible to exploit vulnerable systems over the HttpStk SSL listener (if enabled), and this will
go undetected by these rules.

alert tcp $EXTERNAL_NET any -> $HOME_NET 8028 (msg:"BLEEDING-EDGE Novell
HttpStk Remote Code Execution Attempt /nds"; flow:to_server,established;
content:"/nds"; depth:10; nocase; content:"|0d0a|Host|3a|"; nocase;
content:!"|0d0a|"; within:56; classtype:web-application-attack; sid:20060808;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 8028 (msg:"BLEEDING-EDGE Novell
HttpStk Remote Code Execution Attempt /dhost"; flow:to_server,established;
content:"/dhost"; depth:10; nocase; content:"|0d0a|Host|3a|"; nocase;
content:!"|0d0a|"; within:56; classtype:web-application-attack; sid:20060809;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 8028 (msg:"BLEEDING-EDGE Novell
HttpStk Remote Code Execution Attempt /nds (linewrap)";
flow:to_server,established; content:"/nds"; depth:10; nocase;
content:"|0d0a|Host|3a|"; nocase; content:"|0d0a20|"; within:56; classtype:web-
application-attack; sid:20060810;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 8028 (msg:"BLEEDING-EDGE Novell
HttpStk Remote Code Execution Attempt /dhost (linewrap)";
flow:to_server,established; content:"/dhost"; depth:10; nocase;
content:"|0d0a|Host|3a|"; nocase; content:"|0d0a20|"; within:56;
classtype:web-application-attack; sid:20060811;)

Based on information supplied in the Exploit Design section, it is also possible to detect
potential weaknesses on one’s network using the Nessus security scanner. A plugin for this
vulnerability is provided below.

if (description)
{

script_id(999999);
script_version ("$Revision: 1.0 $");
name["english"] = "eDirectory overly-long Host request-header overflow";
script_name(english:name["english"]);
desc["english"] = "
Synopsis :
Arbitrary code can be executed on the remote host
Description :
Nessus has determined that the remote host responds similarly
to a vulnerable version of eDirectory. The specific vulnerability
is documented at http://www.mnin.org/advisories/2006_novell_httpstk.pdf.

Page 6

http://host/an_invalid_resource

Solution :
This problem is resolved by applying eDir 8.8.1 ftf for eDirectory
8.8 or edir8739imon.tgz for eDirectory 8.7.3.8.
Risk factor : High";
script_description(english:desc["english"]);
summary["english"] = "Checks for the eDirectory HTTP host request-header
value overflow";
script_summary(english:summary["english"]);
family["english"] = "Web Servers";
script_family(english:family["english"]);
exit(0);

}

include("global_settings.inc");
include("http_func.inc");
include("http_keepalive.inc");

port=get_http_port(default:8028);
if(!get_port_state(port))
exit(0);

hoststr="nessus:" + crap(500);
host=string("Host: ",hoststr,"\r\n");
url_nds=string("GET /nds HTTP/1.1\r\n",host,"\r\n");

sock=open_sock_tcp(port);
if(sock==NULL)
exit(0);

send(socket:sock,data:url_nds);
while(s=recv_line(socket:sock,length:1024)){
if(egrep(pattern:"^Location: https?://nessus",string:s))
 security_hole(port);
}
close(sock);
exit(0);

 Remediation

FTF packages and additional information will be available on Novell’s website by searching
for one or more of the following TIDs: 2974592, 2974600, 2974603.

 Event Timeline

08-Sep-2006 Located vulnerability
08-Sep-2006 Drafted this advisory
11-Sep-2006 Notified vendor of vulnerability
20-Oct-2006 Vendor to release FTF packages

Page 7

 Attributions

The good and no-good thumb images were purchased from
www.istockphoto.com for one dollar.

The vulnerable software was obtained from:
http://www.novell.com

The code snippet was extracted from the disassembly pane of IDA Pro:
http://www.datarescue.com

 License

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy
of this license, visit http://creativecommons.org/licenses/by/2.5/ or send a letter to
Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

Attribution should be provided both in the form of a link or reference to
http://www.hustlelabs.com, http://www.mnin.org, and a copy of the researchers’ names
listed under the Credit and Contact section of this document.

All other trademarks and copyrights referenced in this document are the property of their
respective owners.

Page 8

http://www.istockphoto.com/
http://www.novell.com/
http://www.datarescue.com/
http://www.hustlelabs.com/
http://www.mnin.org/

