

Zeroday Emergency Response Team (ZERT)

Analysis of CVE-2006-4868 and Patch Description

by Michael Hale Ligh with thanks to (member list).
2006-10-04

Synopsis: This document provides a brief, quasi-technical analysis of CVE-2006-4868.
The purpose is to disseminate information on the particular vulnerability and to assist
with understanding of how the ZERT patch was designed to mitigate the flaw.

Introduction

The vulnerability in Microsoft’s Vector Graphics Rendering Engine (vgx.dll) exists due
to an overzealous for() loop that copies data from a large, dynamically allocated buffer
into an inadequate, fixed-size buffer on the stack. The data being copied in this routine is
user-supplied as a Vector Markup Language (VML) “fill method” attribute. Legitimate
values for the attribute include “none”, “any”, “linear,” and “sigma.”, [Specification draft
for VML]. A vulnerable version of the library will copy the user-supplied string without
checking its size, allowing a malicious document containing an overly-long fill method
string to cause data to be written outside of the destination buffer’s boundaries.

The ZERT patch for this vulnerability adds a check to the code before it can begin
execution of the described loop. If the length of the user-supplied fill method string is
greater than 512 bytes (size of destination buffer), the loop is avoided by making a jump
to the function’s cleanup instructions, and subsequently returns null. The function could
return null for several reasons; such as if the fill method string does not contain any
characters. By handling the overly-long string condition in this manner, we can be
relatively certain that nothing out of the ordinary will happen. After patching, the library
function will react to overly-long fill method strings with the same behavior as it exhibits
when the fill method string is null.

If the added conditional determines that the string is not greater than 512 bytes, it will
allow the library function to enter the copy loop and proceed with normal execution of
the program.

Technical Description

To further describe the vulnerability and patch mechanism, an affected version of the
library was disassembled and reverse engineered. It was found that the code declares a
class similar to the one below:

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 license.

http://isotf.org/zert/

Page 1

http://isotf.org/zert/
http://isotf.org/zert/members.htm
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4868
http://isotf.org/zert/
http://www.w3.org/TR/NOTE-VML
http://www.w3.org/TR/NOTE-VML

class TOKENS {
 public:
 WCHAR *Ptok(void);
 private:
 LPWSTR szInput; // pointer to input string on heap
 int nSize; // length of input string (in WCHARs)
 int idxInput; // index used within the for()loop
 WCHAR szOutput[256]; // output buffer for string
};

The length of the supplied fill method string is determined by counting the number of 2-
byte values at the location pointed to by szInput. The number is saved in the nSize
variable. As shown in the following pseudo-code, nSize is then used as the criteria for
terminating the loop that copies values from the source buffer containing the user-
supplied fill method string into the 512 byte szOutput buffer, which is stored on the stack.

The length-checking conditional inserted by the ZERT patch is commented, just above
the for() loop. Please note that this code is meant to describe the behavior of the
vulnerable function, it is not an exact duplicate of the original source code.

WCHAR *TOKENS::Ptok(void){
 register int idxCurr;

 if (szInput==NULL)
 return(NULL);

 /* Added by the ZERT patch
 if (nSize >= 256) {
 return(NULL);
 }*/

for(idxCurr=0; idxInput < nSize && szInput[idxInput] != '\0';
idxInput++)
{

 if (szInput[idxInput] == ' '){
 if (idxCurr){ // Encountered non-leading space
 break;
 }
 else{ // Encountered leading space
 continue;
 }
 }
 szOutput[idxCurr]=szInput[idxInput]; // Copy the WCHAR
 idxCurr++;
 }
 if (idxCurr > 0){
 szOutput[idxCurr]='\0'; // NULL terminate
 return(szOutput);
 }
 return(NULL);
}

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 license.

http://isotf.org/zert/

Page 2

It should now be clear how the ZERT patch fixes the vulnerability, from a high-level
language perspective. To understand the fix at a lower level, please see the following
disassembly views of the function containing the vulnerability. The samples were
prepared using IDA Pro and selected instructions are commented with lines from the
pseudo-source code as accurately as possible.

mov edx, [ecx]
push ebx
push esi
xor esi, esi
cmp edx, esi
push edi
jz short loc_5DEDED3B ; if (szInput==NULL)
mov eax, [ecx+8]
cmp eax, [ecx+4]
jge short loc_5DEDED3B ; if (idxInput >= nSize)
cmp [edx+eax*2], si
jz short loc_5DEDED3B
lea eax, [ecx+0Ch] ; szOutput
mov edi, eax
top_for_loop:
 mov edx, [ecx+8]
 mov ebx, [ecx]
 mov dx, [ebx+edx*2]
 test dx, dx
 jz short loc_5DEDED2F ; if (szInput[idxInput]==’\0’)
 cmp dx, 20h
 jnz short loc_5DEDED1E ; if (szInput[idxInput]!=0x20)
 test esi, esi
 jg short loc_5DEDED33 ; if (idxCurr)
 jmp short loc_5DEDED24
loc_5DEDED1E:
 mov [edi], dx ; szOutput[idxCurr]= szInput[idxInput];
 inc esi
 inc edi ; idxCurr++;
 inc edi
loc_5DEDED24:
 inc dword ptr [ecx+8] ; idxInput++;
 mov edx, [ecx+8]
 cmp edx, [ecx+4]
 jl short top_for_loop ; if (idxInput < nSize)
loc_5DEDED2F:
 test esi, esi
 jle short loc_5DEDED3B
loc_5DEDED33:
 and word ptr [ecx+esi*2+0Ch], 0 ; szOutput[idxCurr]=0;
 jmp short loc_5DEDED3D
loc_5DEDED3B:
 xor eax, eax ; return(NULL);

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 license.

http://isotf.org/zert/

Page 3

http://www.datarescue.com/idabase/index.htm

The first 0x23 bytes of this function provide an accurate signature for locating it within
the library, and is consistent across all 32-bit versions of the library available to the team
for testing. In other words, the sequence of bytes occurs exactly once. During execution,
the patch loads a copy of the vulnerable library into memory, locates the signature, and
applies the patch code. It then writes the patched library to disk (patchedvgx.dll), un-
registers the original DLL, and registers the new one. The original DLL is not modified,
so the patch can be easily reversed by using the patch’s rollback function or by manually
re-registering the original. Patching vgx.dll for AMD64 was also supported; the technical
details are the same as for the 32bits patch, using a different signature.

At this stage it should be noted that there was not enough space to apply the patch. ZERT
volunteer Gil Dabah re-wrote the vulnerable function, removing several instructions in
order to make room for the bounds check, while maintaining most of the funtionality (as
described below). He compiled the new function using the Yasm assembler, and hard
coded the compiled result into the binary.

The next disassembly shows the function code after applying the ZERT patch.

mov edx, [ecx]
push ebx
push esi
xor esi, esi
cmp edx, esi
push edi
jz short loc_5DEDED38
cmp dword ptr [ecx+4], 100h
jnb short loc_5DEDED38 ; if (nSize >= 256)
mov eax, [ecx+8]
cmp eax, [ecx+4]
jge short loc_5DEDED38
cmp [edx+eax*2], si
jz short loc_5DEDED38
lea eax, [ecx+0Ch]
mov edi, eax
top_for_loop:
 mov edx, [ecx+8]
 mov ebx, [ecx]
 mov dx, [ebx+edx*2]
 test dx, dx
 jz short loc_5DEDED33
 cmp dx, 20h
 jnz short loc_5DEDED23
 jmp short loc_5DEDED28
loc_5DEDED23:
 mov [edi], dx
 inc edi
 inc edi
loc_5DEDED28:
 inc dword ptr [ecx+8]
 mov edx, [ecx+8]
 cmp edx, [ecx+4]
 jl short top_for_loop

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 license.

http://isotf.org/zert/

Page 4

http://www.tortall.net/projects/yasm/

loc_5DEDED33:
 and [edi], si
 jmp short loc_5DEDED3A
loc_5DEDED38:
 xor eax, eax
loc_5DEDED3A:
 pop edi
 pop esi
 pop ebx
 retn

In order to make room for the length checking conditional (without extending the size of
the original function, which would encroach upon instructions belonging to surrounding
functions and cause unpredictable reactions), some modifications were made to the
handling of space characters in the fill method string. This will produce a minor
difference in the visual effect of VML objects rendered with the patched binary if the
object has a fill method value consisting of more than one property. For example, the
following VML is legitimate, and therefore could be used in some documents:

<v:rect fill method=”linear sigma”>

Below there are two screenshots provided to display the potential difference in
appearance. One is produced with a fill method value of “linear sigma” (left) and the
other has only “sigma” (right).

Microsoft’s Official Patch

The official patch provided by Microsoft on September 26, 2006 mitigates the
vulnerability by adding a size check within the for() loop. It only copies the first 254
WCHARs into the destination buffer. The critical section of this adjustment it shown
below:

size_check:
 cmp esi, 0FEh
 jnb short skip_copy
 mov [edi], dx
 inc esi
 inc edi
 inc edi

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 license.

http://isotf.org/zert/

Page 5

http://www.microsoft.com/technet/security/Bulletin/MS06-055.mspx

The ZERT patch was a joint work of the ZERT team, and specifically, from a technical
stand-point it was created by Gil Dabah with help from Joe Stewart and Michael Hale
Ligh (the author of this document). We would also like to thank Gadi Evron for
reviewing.

This paper can be found at:
http://isotf.org/zert/papers/vml-details-20061004.pdf

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 license.

http://isotf.org/zert/

Page 6

http://isotf.org/zert/papers/vml-details-20061004.pdf

